Cách tính xác suất theo định nghĩa cổ điển - Toán 10

Cách tính xác suất theo định nghĩa cổ điển

1. Xác suất của biến cố

Giả sử một phép thử có không gian mẫu Ω gồm hữu hạn các kết quả có cùng khả năng xảy ra là một biến cố.

Xác suất của biến cố A là một số, kí hiệu là P(A), được xác định bởi công thức:

\(\frac{{n(A)}}{{n(\Omega )}}\)

trong đó n(A), n(Ω) lần lượt kí hiệu số phần tử của tập hợp A và Ω.

Chú ý:

- Định nghĩa trên được gọi là định nghĩa cổ điển của xác suất.

- Với mọi biến cố A, \(0 \le P(A) \le 1\).

- \(P(\emptyset ) = 0\); \(P(\Omega ) = 1\).

2. Ví dụ minh hoạ tính xác suất theo định nghĩa cổ điển

1) Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 2 chiếc thẻ từ trong hộp.

a) Gọi Ω là không gian mẫu trong trò chơi trên. Tính số phần tử của tập hợp Ω.

b) Tính xác suất của biến cố E: “Tổng các số trên hai thẻ là số lẻ”.

Giải:

a) Mỗi phần tử của không gian mẫu Ω là một tổ hợp chập 2 của 5 phần tử trong tập hợp {1;2;3;4;5}. Vì thế \(n(\Omega ) = C_5^2 = \frac{{5!}}{{2!.3!}} = \frac{{5.4}}{2} = 10\).

b) Biến cố E gồm các cách chọn ra hai chiếc thẻ ghi số là: 1 và 2; 1 và 4; 2 và 3; 2 và 5; 3 và 4; 4 và 5. Vì thế n(E) = 6. Vậy xác suất của biến cố E là:

\(P(E) = \frac{{n(E)}}{{n(\Omega )}} = \frac{6}{{10}} = \frac{3}{5}\).

2) Một hộp có 10 quả bóng trắng và 10 quả bóng đỏ; các quả bóng có kích thước và khối lượng giống nhau. Lấy ngẫu nhiên đồng thời 9 quả bóng trong hộp. Tính xác suất để trong 9 quả bóng được lấy ra có ít nhất một quả bóng màu đỏ.

Giải:

Mỗi cách lấy ra đồng thời 9 quả bóng là một tổ hợp chập 9 của 20 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 9 của 20 phần tử và \(n(\Omega ) = C_{20}^9\).

Xét biến cố K: “Trong 9 quả bóng được lấy ra có ít nhất một quả bóng màu đỏ”.

Khi đó biến cố đối của biến cố K là biến cố \(\overline K \): “Trong 9 quả bóng được lấy ra không có quả bóng màu đỏ nào”, tức là cả 9 quả bóng được lấy ra có màu trắng.

Mỗi cách lấy ra đồng thời 9 quả bóng màu trắng là một tổ hợp chập 9 của 10 phần tử.

Do đó \(n(\overline K ) = C_{10}^9 = \frac{{10!}}{{9!.1!}} = 10\). Suy ra \(P(\overline K ) = \frac{{n(\overline K )}}{{n(\Omega )}} = \frac{{10}}{{C_{20}^9}}\).

Vậy \(P(K) = 1 - P(\overline K ) = 1 - \frac{{10}}{{C_{20}^9}}\).

3) Trong hộp có 5 viên bi xanh và 7 viên bi trắng có kích thước và khối lượng như nhau. Ta lấy hai viên bi bằng hai cách như sau:

Cách thứ nhất: Lấy ngẫu nhiên một viên bi, xem màu rồi trả lại hộp. Sau đó lại lấy một viên bi một cách ngẫu nhiên.

Cách thứ hai: Lấy cùng một lúc hai viên bi từ hộp.

Gọi A là biến cố “Cả hai lần đều lấy được bi màu trắng”. Với cách lấy bi nào thì biến cố A có khả năng xảy ra cao hơn?

Giải:

Theo cách lấy bi thứ nhất, áp dụng quy tắc nhân ta có số phần tử của không gian mẫu là n(Ω) = 12.12 = 144.

Số khả năng thuận lợi cho A là n(A) = 7.7 = 49.

Do đó xác suất của biến cố A theo cách lấy bi thứ nhất là \(\frac{{49}}{{144}}\).

Theo cách lấy bi thứ hai, số phần tử của không gian mẫu là n(Ω) = \(C_{12}^2\) = 66.

Số khả năng thuận lợi cho A là n(A) = \(C_7^2\) = 21.

Do đó xác suất của biến cố A theo cách lấy bi thứ hai là \(\frac{{21}}{{66}} = \frac{7}{{22}}\).

Vì \(\frac{{49}}{{144}} > \frac{7}{{22}}\) nên với cách lấy bi thứ nhất thì biến cố A có khả năng xảy ra cao hơn.

4) Một tổ trong lớp 10A có 10 học sinh trong đó có 6 học sinh nam và 4 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ đó để tham gia đội tình nguyện Mùa hè xanh. Tính xác suất của hai biến cố sau:

C: “6 học sinh được chọn đều là nam”;

D: “Trong 6 học sinh được chọn có 4 nam và 2 nữ”.

Giải:

Không gian mẫu là tập tất cả các tập con gồm 6 học sinh trong 10 học sinh. Vậy $n(\Omega)=C_{10}^{6}=210$.

a) Tập $C$ chỉ có một phần tử là tập 6 học sinh nam. Vậy $n(C)=1$, do đó $P(C)=\frac{1}{210}$.

b) Mỗi phần tử của $D$ được hình thành từ hai công đoạn.

Công đoạn 1: Chọn 4 học sinh nam từ 6 học sinh nam, có:

$C_{6}^{4}=15$ (cách chọn).

Công đoạn 2: Chọn 2 học sinh nữ từ 4 học sinh nữ, có:

$C_{4}^{2}=6$ (cách chọn).

Theo quy tắc nhân, tập $D$ có $15.6=90$ (phần tử).

Vậy $n(D)=90$.

Từ đó $P(D)=\frac{90}{210}=\frac{3}{7}$.

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!