Bài tập cuối chuyên đề 3 - Chuyên đề học tập Toán 12 Chân trời sáng tạo

Bình chọn:
4.9 trên 7 phiếu
Bài 1 trang 71

Cho biến ngẫu nhiên rời rạc (X) có bảng phân bố xác suất như sau: a) Xác suất của biến cố “(X) lớn hay bằng 2” là A. 0. B. 0,4. C. 0,8. D. 0,2. b) Kì vọng của (X) là A. ‒1. B. 0,4. C. 1. D. 1,4. c) Phương sai của (X) là A. 13,44. B. 15,4. C. 1,96. D. 12,6.

Xem lời giải

Bài 2 trang 71

Cho biến ngẫu nhiên rời rạc (X) có phân bố nhị thức (Bleft( {5;0,2} right)). a) Xác suất của biến cố “(X) bằng 2” là A. 0,2048. B. 0,0512. C. 0,0205. D. 0,4. b) Kì vọng của (X) là A. 0,2. B. 1. C. 0,8. D. 5. c) Phương sai của (X) là A. 0,8. B. 0,89. C. 0,64. D. 1.

Xem lời giải

Bài 3 trang 71

Kết quả khảo sát chiều cao (đơn vị: cm, làm tròn đến hàng đơn vị) của 50 cây gỗ Trầm Hương giống được thống kê lại ở bảng tần số sau: Chọn ngẫu nhiên 1 cây giống trong 50 cây đó và gọi (X) là chiều cao của cây (đơn vị: cm, làm tròn đến hàng đơn vị). Hãy tính kì vọng và độ lệch chuẩn của (X).

Xem lời giải

Bài 4 trang 71

Đầu năm cô Hà vay ngân hàng 2 triệu đồng mua cổ phiếu mã DEF với giá 20000 đồng một cổ phiếu. Lãi suất ngân hàng là 9,5% một năm. Đến cuối năm, cô Hà bán toàn bộ cổ phiếu đó và lấy tiền trả nợ cho ngân hàng. Gọi X là số tiền còn lại. Hãy lập bảng phân bố xác suất của X, biết rằng đến cuối năm, mỗi cổ phiếu mã DEF có giá là 25.000 đồng với xác suất là 0,3 và 31000 đồng với xác suất là 0,7.

Xem lời giải

Bài 5 trang 72

Một hộp chứa 5 tấm thẻ cùng loại được đánh số từ 1 đến 5. Thẻ số 5 có thể đổi được 10 điểm còn mỗi thẻ ghi số chẵn có thể đổi được 5 điểm. Các thẻ còn lại không đổi được điểm. Rút ra ngẫu nhiên đồng thời 2 thẻ từ hộp và đổi các thẻ này lấy điểm. Gọi X là số điểm đổi được. Hãy lập bảng phân bố xác suất, tính kì vọng và phương sai của X.

Xem lời giải

Bài 6 trang 72

Trong hộp có 10 quả trứng cùng loại, trong đó có 8 quả trứng bình thường và 2 quả trứng đặc biệt có 2 lòng đỏ. Bác Lan lấy ra ngẫu nhiên đồng thời 2 quả trứng từ hộp, đập chúng vào bát và quan sát số lòng đỏ trứng. Gọi X là số lòng đỏ bác Lan quan sát được. Hãy lập bảng phân bố xác suất và tính kì vọng của X.

Xem lời giải

Bài 7 trang 72

Tỉ lệ người cao tuổi trong một cộng đồng dân cư là 23%. Chọn ngẫu nhiên một cách độc lập 5 người trong cộng đồng dân cư. Gọi X là số người cao tuổi trong 5 người được chọn. Hãy tính kì vọng và phương sai của X.

Xem lời giải

Bài 8 trang 72

Bác Minh thực hiện 10 lần ghép cành một cách độc lập với nhau. Biết rằng xác suất thành công của mỗi lần ghép là 0,75. Hãy tính xác suất của các biến cố: (A): “Có đúng 8 trong 10 lần ghép thành công”; (B): “Có ít nhất 8 trong 10 lần ghép thành công”.

Xem lời giải

Bài 9 trang 72

Ở một khu vực, tất cả trẻ sơ sinh đều đã được tiêm từ 1 đến 4 liều vắc xin phòng bệnh Viêm gan B trước khi được 18 tháng tuổi. Biểu đồ bên biểu diễn tỉ lệ trẻ em theo số liều vắc xin phòng bệnh Viêm gan B đã được tiêm cho đến khi được 18 tháng tuổi ở khu vực đó. a) Trung bình mỗi trẻ em ở khu vực đó được tiêm bao nhiêu liều vắc xin phòng bệnh Viêm gan B trước khi được 18 tháng tuổi? b) Chọn ngẫu nhiên một cách độc lập 50 trẻ em từ khu vực đó. Gọi X là số trẻ em đã được tiêm ít nhất 3 mũi vắ

Xem lời giải

Bài 10 trang 72

Cô An thiết kế một đề thi trắc nghiệm gồm (m) câu hỏi, mỗi câu hỏi có (k) lựa chọn. Mỗi câu trả lời đúng được 1 điểm. Cô An muốn thiết kế sao cho nếu một học sinh lựa chọn phương án trả lời cho mỗi câu hỏi một cách ngẫu nhiên và độc lập với nhau thì điểm số trung bình của học sinh đó sẽ là 10 với độ lệch chuẩn ít nhất là (2sqrt 2 ). Cô An cũng muốn số phương án trả lời (k) ít nhất có thể. Vậy cô An nên thiết kế đề với (m) và (k) bằng bao nhiêu?

Xem lời giải