Sau Kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020, học sinh hia lớp 9A và 9B tặng lại thư viện trường 738 quyển sách gồm hai loại sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A tặng 6 quyển sách giáo khoa và 3 quyển sách tham khảo; mỗi học sinh lớp 9B tặng 5 quyển sách giáo khoa và 4 quyển sách tham khảo. Biết số sách giao khoa nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh của mỗi lớp.
-
A.
Số học sinh lớp 9A có 40 học sinh, lớp 9B có 42 học sinh.
-
B.
Số học sinh lớp 9A có 42 học sinh, lớp 9B có 42 học sinh.
-
C.
Số học sinh lớp 9A có 42 học sinh, lớp 9B có 40 học sinh.
-
D.
Số học sinh lớp 9A có 40 học sinh, lớp 9B có 40 học sinh.
Gọi số học sinh lớp 9A là \(x\) (học sinh) \(\left( {x \in \mathbb{N}*} \right).\)
Gọi số học sinh lớp 9A là \(y\) (học sinh) \(\left( {y \in \mathbb{N}*} \right).\)
Biểu diễn số sách giáo khoa và sách tham khảo mỗi lớp tặng lại cho trường rồi lập hệ phương trình.
Giải hệ phương trình, đối chiếu với điều kiện của\(x,\,\,y\) rồi kết luận.
Gọi số học sinh lớp 9A là \(x\) (học sinh) \(\left( {x \in {\mathbb{N}^*}} \right).\)
Gọi số học sinh lớp 9B là \(y\) (học sinh) \(\left( {y \in {\mathbb{N}^*}} \right).\)
Số sách giáo khảo lớp 9A tặng cho trường là: \(6x\) (quyển sách).
Số sách tham khảo lớp 9A tặng cho trường là: \(3x\) (quyển sách).
Số sách giáo khảo lớp 9B tặng cho trường là: \(5y\) (quyển sách).
Số sách tham khảo lớp 9B tặng cho trường là: \(4y\) (quyển sách).
Tổng số sách cả hai lớp tặng cho trường là 738 quyển nên ta có phương trình:
\(6x + 3x + 5y + 4y = 738 \\ 9x + 9y = 738 \\ x + y = 82\,\,\,\left( 1 \right)\)
Tổng số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình:
\(6x + 5y - \left( {3x + 4y} \right) = 166 \\ 3x + y = 166\,\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{ \begin{array}{l}x + y = 82\\3x + y = 166\end{array} \right. \)
Trừ hai vế của phương trình thứ hai cho phương trình thứ nhất, ta được \(2x = 84\) hay \(x = 42\,\,\,\left( {tm} \right)\) suy ra \(y = 40\,\,\,\left( {tm} \right).\)
Vậy số học sinh lớp 9A có 42 học sinh, lớp 9B có 40 học sinh.
Đáp án : C
Các bài tập cùng chuyên đề
Cho một số có hai chữ số . Nếu đổi chỗ hai chữ số của nó thì được một số lớn hơn số đã cho là $63$. Tổng của số đã cho và số mới tạo thành bằng $99$. Tổng các chữ số của số đó là
-
A.
$9$
-
B.
$8$
-
C.
$7$
-
D.
$6$
Cho một số có hai chữ số. Chữ số hàng chục lớn hơn chữ số hàng đơn vị là $5$. Nếu đổi chỗ hai chữ số cho nhau ta được một số bằng $\dfrac{3}{8}$ số ban đầu. Tìm tích các chữ số của số ban đầu.
-
A.
$12$
-
B.
$16$
-
C.
$14$
-
D.
$6$
Một ô tô đi quãng đường $AB$ với vận tốc $50\,\,km/h$ , rồi đi tiếp quãng đường $BC$ với vận tốc $45km/h.$ Biết quãng đường tổng cộng dài $165\,\,km$ và thời gian ô tô đi trên quãng đường $AB$ ít hơn thời gian đi trên quãng đường $BC$ là $30$ phút. Tính thời gian ô tô đi trên đoạn đường $AB$.
-
A.
$2$ giờ
-
B.
$1,5$ giờ
-
C.
$1$ giờ
-
D.
$3$ giờ
Một ôtô dự định đi từ \(A\) đến \(B\) trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn \(10\,km\) thì đến nơi sớm hơn dự định $3$ giờ, còn nếu xe chạy chậm lại mỗi giờ \(10\,km\) thì đến nơi chậm mất $5$ giờ. Tính vận tốc của xe lúc ban đầu.
-
A.
$40\,{\rm{km/h}}$
-
B.
$35\,{\rm{km/h}}$
-
C.
$50\,{\rm{km/h}}$
-
D.
$60\,{\rm{km/h}}$
Hai người đi xe đạp xuất phát đồng thời từ hai thành phố cách nhau \(38\,km\) . Họ đi ngược chiều và gặp nhau sau $2$ giờ. Hỏi vận tốc của người thứ nhất, biết rằng đến khi gặp nhau, người thứ nhất đi được nhiều hơn người thứ hai \(2\,km\) ?
-
A.
$7\,{\rm{km/h}}$
-
B.
$8\,{\rm{km/h}}$
-
C.
$9\,{\rm{km/h}}$
-
D.
$10\,{\rm{km/h}}$
Một khách du lịch đi trên ôtô $4$ giờ, sau đó đi tiếp bằng tàu hỏa trong $7$ giờ được quãng đường dài \(640\,km\). Hỏi vận tốc của tàu hỏa , biết rằng mỗi giờ tàu hỏa đi nhanh hơn ôtô \(5\,km\) ?
-
A.
$40\,{\rm{km/h}}$
-
B.
$50\,{\rm{km/h}}$
-
C.
$60\,{\rm{km/h}}$
-
D.
$65\,{\rm{km/h}}$
Hai vòi nước cùng chảy vào một bể thì sau $4$ giờ $48$ phút bể đầy. Nếu vòi I chảy riêng trong $4$ giờ, vòi II chảy riêng trong $3$ giờ thì cả hai vòi chảy được $\dfrac{3}{4}$ bể. Tính thời gian vòi I một mình đầy bể.
-
A.
$6$ giờ
-
B.
$8$ giờ
-
C.
$10$ giờ
-
D.
$12$ giờ
Trong tháng đầu hai tổ sản xuất được $800$ sản phẩm. Sang tháng thứ $2$ , tổ $1$ sản xuất vượt mức $12\% $ , tổ $2$ giảm $10\% $ so với tháng đầu nên cả hai tổ làm được $786$ sản phẩm. Tính số sản phẩm tổ $1$ làm được trong tháng đầu.
-
A.
\(500\) sản phẩm.
-
B.
\(300\) sản phẩm
-
C.
\(200\) sản phẩm.
-
D.
\(400\) sản phẩm.
Một tam giác có chiều cao bằng $\dfrac{3}{4}$ cạnh đáy. Nếu chiều cao tăng thêm $3$ $dm$ và cạnh đáy giảm đi $3$ $dm$ thì diện tích của nó tăng thêm $12$ $d{m^2}$ . Tính diện tích của tam giác ban đầu.
-
A.
$700\,\,d{m^2}$
-
B.
$678\,\,d{m^2}$
-
C.
$627\,\,d{m^2}$
-
D.
$726\,\,d{m^2}$
Một khu vườn hình chữ nhật có chu vi bằng $48$ $m.$ Nếu tăng chiều rộng lên bốn lần và tăng chiều dài lên ba lần thì chu vi của khu vườn sẽ là $162$ $m$. Tìm diện tích của khu vườn ban đầu.
-
A.
$24\,\,{m^2}$
-
B.
$153\,\,{m^2}$
-
C.
$135\,\,{m^2}$
-
D.
$14\,\,{m^2}$
Hai giá sách có $450$ cuốn. Nếu chuyển $50$ cuốn từ giá thứ nhất sang giá thứ hai thì số sách trên giá thứ hai bằng $\dfrac{4}{5}$ số sách ở giá thứ nhất. Tính số sách trên giá thứ hai.
-
A.
$150$ cuốn
-
B.
$300$ cuốn
-
C.
$200$ cuốn
-
D.
$250$ cuốn
Trên một cánh đồng cấy $60$ ha lúa giống mới và $40$ ha lúa giống cũ, thu hoạch được tất cả $460$ tấn thóc. Hỏi năng suất lúa mới trên $1$ ha là bao nhiêu, biết rằng $3$ ha trồng lúa mới thu hoạch được ít hơn $4$ ha trồng lúa cũ là $1$ tấn.
-
A.
$5$ tấn
-
B.
$4$ tấn
-
C.
$6$ tấn
-
D.
$3$ tấn
Trong một kì thi, hai trường $A,B$ có tổng cộng $350$ học sinh dự thi. Kết quả hai trường đó có $338$ học sinh trúng tuyển. Tính ra thì trường $A$ có \(97\% \) và trường $B$ có \(96 \% \) số học sinh trúng tuyển. Hỏi trường $B$ có bao nhiêu học sinh dự thi.
-
A.
$200$ học sinh
-
B.
$150$ học sinh
-
C.
$250$ học sinh
-
D.
$225$ học sinh
Một mảnh đất hình chữ nhật có chu vi bằng $42$ m. Đường chéo hình chữ nhật dài $15$ m. Tính độ dài chiều rộng mảnh đất hình chữ nhật.
-
A.
$10\,\,m$
-
B.
$12\,\,m$
-
C.
$9\,\,m$
-
D.
$8\,\,m$
Một ô tô đi quãng đường $AB$ với vận tốc $52\,\,km/h$ , rồi đi tiếp quãng đường $BC$ với vận tốc $42km/h.$ Biết quãng đường tổng cộng dài $272\,\,km$ và thời gian ô tô đi trên quãng đường $AB$ ít hơn thời gian đi trên quãng đường $BC$ là $2$ giờ. Tính thời gian ô tô đi trên đoạn đường $BC$.
-
A.
$2$ giờ
-
B.
$4$ giờ
-
C.
$1$ giờ
-
D.
$3$ giờ
Một xe đạp dự định đi từ \(A\) đến \(B\) trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn \(10\,km\) thì đến nơi sớm hơn dự định $1$ giờ, còn nếu xe chạy chậm lại mỗi giờ \(5\,km\) thì đến nơi chậm mất $2$ giờ. Tính vận tốc của xe lúc ban đầu.
-
A.
$8\,{\rm{km/h}}$
-
B.
$12\,{\rm{km/h}}$
-
C.
$10\,{\rm{km/h}}$
-
D.
$20\,{\rm{km/h}}$
Hai người đi xe máy xuất phát đồng thời từ hai thành phố cách nhau \(225\,km\) . Họ đi ngược chiều và gặp nhau sau $3$ giờ. Hỏi vận tốc của người thứ nhất, biết rằng vận tốc người thứ nhất lớn hơn người thứ hai \(5\,km/h\) ?
-
A.
$40\,{\rm{km/h}}$
-
B.
$35\,{\rm{km/h}}$
-
C.
$45\,{\rm{km/h}}$
-
D.
$50\,{\rm{km/h}}$
Một khách du lịch đi trên ôtô $5$ giờ, sau đó đi tiếp bằng xe máy trong $3$ giờ được quãng đường dài \(330\,km\). Hỏi vận tốc của ô tô , biết rằng mỗi giờ xe máy đi chậm hơn ôtô \(10\,km\) ?
-
A.
$40\,{\rm{km/h}}$
-
B.
$50\,{\rm{km/h}}$
-
C.
$35\,{\rm{km/h}}$
-
D.
$45\,{\rm{km/h}}$
Hai bạn $A$ và $B$ cùng làm chung một công việc thì hoàn thành sau $8$ ngày. Hỏi nếu $A$ làm riêng hết \(\dfrac{1}{3}\) công việc rồi nghỉ thì $B$ hoàn thành nốt công việc trong thời gian bao lâu ? Biết rằng nếu làm một mình xong công việc thì $A$ làm nhanh hơn B là $12$ ngày.
-
A.
$16$ ngày
-
B.
$18$ ngày
-
C.
$10$ ngày
-
D.
$12$ ngày
Một tấm bìa hình tam giác có chiều cao bằng $\dfrac{1}{4}$ cạnh đáy tương ứng. Nếu tăng chiều cao $2dm$ và giảm cạnh đáy $2dm$ thì diện tích tam giác tăng thêm $2,5{dm^2}$. Tính chiều cao và cạnh đáy của tấm bìa lúc ban đầu.
-
A.
$1,5dm$ và $6dm$
-
B.
$2dm$ và $8dm$
-
C.
$1dm$ và $4dm$
-
D.
$3dm$ và $12dm$
Một hình chữ nhật có chu vi $300cm$. Nếu tăng chiều rộng thêm $5cm$ và giảm chiều dài $5cm$ thì diện tích tăng $275c{m^2}$. Tính chiều dài và chiều rộng của hình chữ nhật.
-
A.
$120cm$ và $30cm$
-
B.
$105cm$ và $45cm$
-
C.
$70cm$ và $80cm$
-
D.
$90cm$ và $60cm$
Nam có 360 viên bi trong hai hộp. Nếu Nam chuyển 30 viên bi từ hộp thứ hai sang hộp thứ nhất thì số viên bi ở hộp thứ nhất bằng \(\dfrac{5}{7}\) số viên bị ở hộp thứ hai. Hỏi hộp thứ hai có bao nhiêu viên bi?
-
A.
250 viên
-
B.
180 viên
-
C.
120 viên
-
D.
240 viên
Trên một cánh đồng cấy $50$ ha lúa giống mới và $30$ ha lúa giống cũ, thu hoạch được tất cả $410$ tấn thóc. Hỏi năng suất lúa cũ trên $1$ ha là bao nhiêu, biết rằng $5$ ha trồng lúa mới thu hoạch được nhiều hơn $6$ ha trồng lúa cũ là $0,5$ tấn.
-
A.
$5,5$ tấn
-
B.
$4$ tấn
-
C.
$4,5$ tấn
-
D.
$3$ tấn
Hai trường có tất cả 300 học sinh tham gia một cuộc thi. Biết trường A có $75\% $ học sinh đạt, trường 2 có $60\% $ đạt nên cả 2 trường có 207 học sinh đạt. Số học sinh dự thi của trường A và trường B lần lượt là:
-
A.
160 và 140
-
B.
200 và 100
-
C.
180 và 120
-
D.
Tất cả đều sai
Một mảnh đất hình chữ nhật có nửa chu vi bằng $34$ m. Đường chéo hình chữ nhật dài $26$ m. Tính chiều dài mảnh đất hình chữ nhật.
-
A.
$24\,\,m$
-
B.
$12\,\,m$
-
C.
$18\,\,m$
-
D.
$20\,m$
Để tổ chức đi tham quan hướng nghiệp cho 435 người gồm học sinh khối lớp 9 và giáo viên phụ trách, nhà trường đã thuê 11 chiếc xe gồm hai loại: loại 30 chỗ ngồi và loại 45 chỗ ngồi (không kể tài xế). Hỏi nhà trường cần thuê bao nhiêu xe mỗi loại? Biết rằng không có xe nào còn trống chỗ.
-
A.
\(4\) xe loại \(30\) chỗ và \(7\) xe loại \(45\) chỗ
-
B.
\(7\) xe loại \(30\) chỗ và \(4\) xe loại \(45\) chỗ
-
C.
\(6\) xe loại \(30\) chỗ và \(5\) xe loại \(45\) chỗ
-
D.
\(5\) xe loại \(30\) chỗ và \(6\) xe loại \(45\) chỗ
Mẹ bạn Lan mua trái cây ở siêu thị gồm hai loại cam và nho. Biết rằng \(1kg\) cam có giá \(150\) nghìn đồng, \(1kg\) nho có giá \(200\) nghìn đồng. Mẹ bạn Lan mua \(4kg\) cả hai loại trái cây hết tất cả \(700\) nghìn đồng. Hỏi mẹ bạn Lan đã mua bao nhiêu kg cam, bao nhiêu kg nho?
-
A.
\(1kg\) cam và \(3kg\) nho
-
B.
\(3kg\) cam và \(1kg\) nho
-
C.
\(2kg\) cam và \(2kg\) nho
-
D.
\(0,5kg\) cam và \(3,5kg\) nho
Bạn N tiết kiệm bằng cách mỗi ngày bỏ tiền vào heo đất và chỉ dùng hai loại tiền giấy là tờ \(1000\) đồng và \(2000\) đồng. Hưởng ứng đợt vận động ủng hộ đồng bào bị lụt, bão nên N đập heo đất thu được \(160\,000\) đồng. Khi đó mẹ cho thêm bạn N số tờ tiền loại \(1000\) và số tờ tiền loại \(2000\) đồng lần lượt gấp 2 lần và 3 lần số tờ tiền cùng loại của bạn N có do tiết kiệm, vì vậy bạn N đã ủng hộ được tổng số tiền là \(560\,000\) đồng. Tính số tờ tiền mỗi loại của bạn N có do tiết kiệm.
-
A.
Số tờ tiền mệnh giá \(1000\) đồng: \(60\) tờ
Số tờ tiền mệnh giá \(2000\) đồng: \(40\) tờ
-
B.
Số tờ tiền mệnh giá \(1000\) đồng: \(40\) tờ
Số tờ tiền mệnh giá \(2000\) đồng: \(60\) tờ
-
C.
Số tờ tiền mệnh giá \(1000\) đồng: \(40\) tờ
Số tờ tiền mệnh giá \(2000\) đồng: \(80\) tờ
-
D.
Số tờ tiền mệnh giá \(1000\) đồng: \(80\) tờ
Số tờ tiền mệnh giá \(2000\) đồng: \(40\) tờ
Hai trường THCS có tất cả \(450\) học sinh dự thi vào trường THPT Nguyễn Huệ với tỉ lệ trúng tuyển là \(75\% \)và \(60\% \). Tính số học sinh dự thi của mỗi trường biết tích số học sinh trúng tuyển của hai trường là \(21870\) học sinh.
-
A.
\(250\) và \(200\)
-
B.
\(260\) và \(190\)
-
C.
\(270\) và \(180\)
-
D.
\(280\) và \(170\)
Nhân ngày sách Việt Nam, 120 học sinh khối 8 và 100 học sinh khối 9 cùng tham gia phong trào xây dựng “Tủ sách nhân ái”. Sau một thời gian phát động, tổng số sách cả hai khối đã quyên góp được là 540 quyển. Biết rằng mỗi học sinh khối 9 quyên góp nhiều hơn nhiều hơn mỗi học sinh khối 8 một quyển. Hỏi mỗi khối đã quyên góp được bao nhiêu quyển sách? (Mỗi học sinh trong cùng một khối quyên góp số lượng sách như nhau).
-
A.
khối 9 là 240 quyển, khối 8 là 300 quyển.
-
B.
khối 9 là 280 quyển, khối 8 là 260 quyển.
-
C.
khối 9 là 260 quyển, khối 8 là 280 quyển.
-
D.
khối 9 là 300 quyển, khối 8 là 240 quyển.