Trong các dãy số sau, dãy số nào không là cấp số cộng?
-
A.
Dãy số \(\left( {{a_n}} \right)\) với \({a_n} = 3n - 5\)
-
B.
Dãy số \(\left( {{b_n}} \right)\) với \({b_n} = \sqrt 3 - \sqrt 5 n\)
-
C.
Dãy số \(\left( {{c_n}} \right)\) với \({c_n} = {n^2} - n\)
-
D.
Dãy số \(\left( {{d_n}} \right)\) với \({d_n} = 2017\cot \dfrac{{\left( {4n - 1} \right)\pi }}{2} + 2018\)
Chứng minh hiệu \({u_{n + 1}} - {u_n} = const\,\,\forall n \ge 1\).
Đáp án A ta có \({a_{n + 1}} - {a_n} = 3\left( {n + 1} \right) - 5 - \left( {3n - 5} \right)\) \( = 3n + 3 - 5 - 3n + 5 = 3 \)
\(\Rightarrow \left( {{a_n}} \right)\) là 1 CSC có công sai $d = 3.$
Đáp án B ta có \({b_{n + 1}} - {b_n} = \left( {\sqrt 3 - \sqrt 5 \left( {n + 1} \right)} \right) - \left( {\sqrt 3 - \sqrt 5 n} \right) \) \(= \sqrt 3 - \sqrt 5 n - \sqrt 5 - \sqrt 3 + \sqrt 5 n = - \sqrt 5 \)
\(\Rightarrow \left( {{b_n}} \right)\) là 1 CSC có công sai \(d = - \sqrt 5 \)
Đáp án C ta có \({c_{n + 1}} - {c_n} = {\left( {n + 1} \right)^2} - \left( {n + 1} \right) - {n^2} + n = {n^2} + 2n + 1 - n - 1 - {n^2} + n = 2n \Rightarrow \left( {{c_n}} \right)\) không là CSC.
Đáp án D ta có \(\cot \dfrac{{\left( {4n - 1} \right)\pi }}{2} = 0\,\,\forall n \ge 1 \Rightarrow {d_n} = 2018\,\,\,\forall n \ge 1 \Rightarrow {d_{n + 1}} - {d_n} = 0 \Rightarrow \left( {{d_n}} \right)\) là CSC có công sai $d = 0.$
Đáp án : C
Các bài tập cùng chuyên đề
Trong các dãy số sau, dãy số nào là cấp số cộng?
Cho cấp số cộng \(\left( {{u_n}} \right)\) xác định bởi \({u_3} = - 2\) và \({u_{n + 1}} = {u_n} + 3,\,\,\forall n \in N^*.\) Xác định số hạng tổng quát của cấp số cộng đó.
Cho cấp số cộng \(\left( {{x_n}} \right)\) có \({S_n} = 3{n^2} - 2n\). Tìm số hạng đầu ${u_1}$ và công sai $d$ của cấp số cộng đó.
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_2} = 2017\) và \({u_5} = 1945.\) Tính \({u_{2018}}\) .
Cho cấp số cộng $6;x; - 2;y$. Khẳng định nào sau đây đúng ?
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_3} + {u_5} = 5\\{u_3}.{u_5} = 6\end{array} \right..\) Tìm số hạng đầu của cấp số cộng.
Cho các số thực $x,y,z$ thỏa mãn điều kiện ba số \(\dfrac{1}{{x + y}},\dfrac{1}{{y + z}},\dfrac{1}{{z + x}}\) theo thứ tự lập thành một cấp số cộng. Mệnh đề nào dưới đây là mệnh đề đúng ?
Viết sáu số xen giữa $3$ và $24$ để được một cấp số cộng có $8$ số hạng. Sáu số hạng cần viết thêm là :
Nghiệm của phương trình $1 + 7 + 13 + \ldots + x = 280$ là:
Cho cấp số cộng \(\left( {{u_n}} \right)\) có công sai d = 2 và \(u_2^2 + u_3^2 + u_4^2\) đạt giá trị nhỏ nhất. Số $2018$ là số hạng thứ bao nhiêu của cấp số cộng \(\left( {{u_n}} \right)\)?
Cho cấp số cộng \(\left( {{x_n}} \right)\) có \({x_3} + {x_{13}} = 80.\) Tính tổng ${S_{15}}$ của $15$ số hạng đầu tiên của cấp số cộng đó?
Biết rằng tồn tại các giá trị của \(x \in \left[ {0;2\pi } \right]\) để ba số \(1 + \sin x,\,\,{\sin ^2}x,\,\,1 + \sin 3x\) lập thành một cấp số cộng, tính tổng $S$ các giá trị đó của $x$.
Độ dài $3$ cạnh của một tam giác vuông lập thành một cấp số cộng . Nếu trung bình cộng ba cạnh bằng $6$ thì công sai của cấp số cộng này là:
Trên một bàn cờ có nhiều ô vuông. Người ta đặt $7$ hạt dẻ vào ô vuông đầu tiên, sau đó đặt tiếp vào ô vuông thứ hai nhiều hơn ô đầu tiên là $5$ hạt dẻ, tiếp tục đặt vào ô vuông thứ ba số hạt dẻ nhiều hơn ô thứ hai là $5$ hạt dẻ,… và cứ thế tiếp tục đến ô cuối cùng. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng hết $25450$ hạt dẻ. Hỏi bàn cờ đó có bao nhiêu ô?
Cho cấp số cộng có tổng của $4$ số hạng liên tiếp bằng $22$, tổng bình phương của chúng bằng $166$. Bốn số hạng của cấp số cộng này là:
Mặt sàn tầng một của một ngôi nhà cao hơn mặt sân $0,5m$. Cầu thang đi từ tầng một lên tầng hai gồm $21$ bậc, mỗi bậc cao $18cm$. Ký hiệu ${h_n}$ là độ cao của bậc thứ $n$ so với mặt sân. Viết công thức để tìm độ cao ${h_n}$.
Cho ba số dương $a,b,c$ thỏa mãn điều kiện \(\dfrac{1}{{\sqrt b + \sqrt c }},\dfrac{1}{{\sqrt c + \sqrt a }},\dfrac{1}{{\sqrt a + \sqrt b }}\) lập thành một cấp số cộng. Mệnh đề nào dưới đây là đúng ?
Tìm tất cả các giá trị của tham số $m$ để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng : \({x^3} - 3m{x^2} + 2m\left( {m - 4} \right)x + 9{m^2} - m = 0\) ?
Biết rằng tồn tại hai giá trị của tham số $m$ để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: \({x^4} - 10{x^2} + 2{m^2} + 7m = 0\), tính tổng lập phương của hai giá trị đó.
Cho cấp số cộng \(2;5;8;11;14...\) Công sai của cấp số cộng đã cho bằng