Đề bài

Xác định \(m\) để phương trình \(\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\) có ba nghiệm phân biệt lớn hơn \( - 1\).

  • A.

    \( - \dfrac{7}{2} < m <  - 3\) và \(m \ne  - \dfrac{{19}}{6}\).

  • B.

    \(m <  - \dfrac{7}{2}\).

  • C.

    \( - \dfrac{7}{2} < m <  - 1\) và \(m \ne  - \dfrac{{16}}{9}\)

  • D.

    \( - \dfrac{7}{2} < m < 3\) và \(m \ne  - \dfrac{{19}}{6}\).

Phương pháp giải

Phương trình đã cho có \(3\) nghiệm lớn hơn \( - 1\) nếu phương trình bậc hai có \(2\) nghiệm phân biệt khác \(1\) và lớn hơn \( - 1\)

Chú ý: \({x_1},{x_2} >  - 1\) nếu \(\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) > 0\)

Lời giải của GV Loigiaihay.com

\(\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} + 2\left( {m + 3} \right)x + 4m + 12 = 0{\rm{ }}\left( * \right)\end{array} \right.\).

Phương trình đã cho có ba nghiệm phân biệt lớn hơn \( - 1\) khi và chỉ khi khi phương trình \(\left( * \right)\) có hai nghiệm phân biệt ${x_1}$, ${x_2}$ lớn hơn \( - 1\) và khác \(1\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\{x_1} + 1 + {x_2} + 1 > 0\\\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) > 0\\1 + 2\left( {m + 3} \right) + 4m + 12 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2m - 3 > 0\\ - 2m - 4 > 0\\2m + 7 > 0\\m \ne  - \dfrac{{19}}{6}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - \dfrac{7}{2} < m <  - 3\\m \ne  - \dfrac{{19}}{6}\end{array} \right.\).

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = {x^4} - 4{x^3} - {x^2} + 10x - 3$ trên đoạn $\left[ { - 1;4} \right]$ là

Xem lời giải >>
Bài 2 :

Giá trị nhỏ nhất của biểu thức \(F = y - x\) trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{y - 2x \le 2}\\{2y - x \ge 4}\\{x + y \le 5}\end{array}} \right.\) là

Xem lời giải >>
Bài 3 :

Cho bất phương trình: \({x^2} + 2\left| {x + m} \right| + 2mx + 3{m^2} - 3m + 1 < 0\). Để bất phương trình có nghiệm, các giá trị thích hợp của tham số \(m\) là

Xem lời giải >>
Bài 4 :

Số nghiệm của phương trình $\sqrt {x + 8 - 2\sqrt {x + 7} }  = 2 - \sqrt {x + 1 - \sqrt {x + 7} } $ là

Xem lời giải >>
Bài 5 :

Tìm \(m\) để \(\left( {m + 1} \right){x^2} + mx + m < 0;\forall x \in \mathbb{R}\)?

Xem lời giải >>
Bài 6 :

Tập nghiệm của bất phương trình \(2{x^2} + 4x + 3\sqrt {3 - 2x - {x^2}}  > 1\) là

Xem lời giải >>
Bài 7 :

Tìm giá trị lớn nhất của \(m\) để bất phương trình \(3\left( {x - m} \right) \ge {m^2}\left( {5 - x} \right)\) thỏa với mọi \(x \ge 5\).

Xem lời giải >>
Bài 8 :

Cho các số thực \(x\),\(y\) thỏa mãn: \(2\left( {{x^2} + {y^2}} \right) = 1 + xy\). Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 7\left( {{x^4} + {y^4}} \right) + 4{x^2}{y^2}\) có tổng là

Xem lời giải >>
Bài 9 :

Một hình chữ nhật \(ABCD\) có \(AB = 8\) và \(AD = 6\). Trên đoạn \(AB\) lấy điểm \(E\) thỏa \(BE = 2\) và trên \(CD\) lấy điểm \(G\) thỏa \(CG = 6\). Người ta cần tìm một điểm \(F\) trên đoạn \(BC\) sao cho \(ABCD\) được chia làm hai phần màu trắng và màu xám như hình vẽ. Và diện tích phần màu xám bé hơn ba lần diện tích phần màu trắng. Điều kiện cần và đủ của điểm \(F\) là

Xem lời giải >>
Bài 10 :

Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm \(I\) và \(II\). Mỗi sản phẩm \(I\) bán lãi \(500\) nghìn đồng, mỗi sản phẩm \(II\) bán lãi \(400\) nghìn đồng. Để sản xuất được một sản phẩm \(I\) thì Chiến phải làm việc trong \(3\) giờ, Bình phải làm việc trong \(1\) giờ. Để sản xuất được một sản phẩm \(II\) thì Chiến phải làm việc trong \(2\) giờ, Bình phải làm việc trong \(6\) giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá \(180\) giờ và Bình không thể làm việc quá \(220\) giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

Xem lời giải >>
Bài 11 :

Cho các số thực dương \(x\), \(y\), \(z\). Giá trị nhỏ nhất của biểu thức \(P = \dfrac{{{x^2} + {y^2} + {z^2}}}{{xy + 2yz + zx}}\) là

Xem lời giải >>
Bài 12 :

Cho các số dương \(x\), \(y\), \(z\) thỏa mãn \(xyz = 1\). Khi đó giá trị nhỏ nhất của biểu thức\(P = \dfrac{{\sqrt {1 + {x^3} + {y^3}} }}{{xy}} + \dfrac{{\sqrt {1 + {y^3} + {z^3}} }}{{yz}} + \dfrac{{\sqrt {1 + {z^3} + {x^3}} }}{{zx}}\) là

Xem lời giải >>