Đề bài

Để phương trình sau có \(4\) nghiệm phân biệt: \(\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\). Giá trị của tham số \(a\) là

  • A.

    \(a \in \left( {1;\,10} \right)\).

  • B.

    \(a = 1\).

  • C.

    \(4 < a < \dfrac{{43}}{4}\).

  • D.

    \(a \in \left[ {4;\,\dfrac{{45}}{4}} \right]\).

Phương pháp giải

- Đặt \(t = {x^2} - 5x + a\) biến đổi phương trình về ẩn \(t\)

- Từ điều kiện có nghiệm của phương trình đầu suy ra điều kiện có nghiệm tương ứng của phương trình ẩn \(t\)

- Tìm điều kiện có nghiệm đó và kết luận.

Lời giải của GV Loigiaihay.com

Phương trình đã cho tương đương: \(2\left| {{x^2} - 5x + 4} \right| = {x^2} - 5x + a\), \(\left( 1 \right)\).

Đặt \(t = {x^2} - 5x + a\).

Phương trình \(\left( 1 \right)\) trở thành: \(2\left| {t + 4 - a} \right| = t\), \(\left( 2 \right)\)

Phương trình \(\left( 2 \right)\)\( \Leftrightarrow \left\{ \begin{array}{l}t \ge 0\\\left[ \begin{array}{l}t = 2a - 8\\t = \dfrac{{2a - 8}}{3}\end{array} \right.\end{array} \right.\), để phương trình \(\left( 1 \right)\) có \(4\) nghiệm phân biệt thì điều kiện cần là \(\left( 2 \right)\) phải có \(2\) nghiệm phân biệt, tức là \(2a - 8 > 0\)\( \Leftrightarrow a > 4\), \(\left(  *  \right)\).

Khi đó, thay lại ta có: \(\left[ \begin{array}{l}{x^2} - 5x + a = 2a - 8\\3{x^2} - 15x + 3a = 2a - 8\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}{x^2} - 5x + 8 - a = 0\,\,\,\,\left( 3 \right)\\3{x^2} - 15x + a + 8 = 0\,\,\,\left( 4 \right)\end{array} \right.\).

Điều kiện để \(\left( 1 \right)\) có \(4\) nghiệm phân biệt là mỗi phương trình bậc \(2\) ở trên có \(2\) nghiệm phân biệt và hai nghiệm của \(\left( 3 \right)\) không thỏa mãn \(\left( 4 \right)\)

Mỗi phương trình \(\left( 3 \right),\left( 4 \right)\) có hai nghiệm phân biệt khi và chỉ khi

\(\left\{ \begin{array}{l}{\Delta _1} = 25 - 4\left( {8 - a} \right) > 0\\{\Delta _2} = {15^2} - 4.3.\left( {a + 8} \right) > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a > \dfrac{7}{4}\\a < \dfrac{{43}}{4}\end{array} \right.\)\( \Leftrightarrow \dfrac{7}{4} < a < \dfrac{{43}}{4}\).

Nếu \(x\) là nghiệm của \(\left( 3 \right)\) thì không thỏa mãn \(\left( 4 \right)\)

\( \Rightarrow \left\{ \begin{array}{l}{x^2} - 5x + 8 - a = 0\\3{x^2} - 15x + a + 8 \ne 0\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}{x^2} - 5x + 8 - a = 0\\3\left( {{x^2} - 5x + 8 - a} \right) - 16 + 4a \ne 0\end{array} \right.\)\( \Rightarrow 4a - 16 \ne 0 \Leftrightarrow a \ne 4\)  

So với điều kiện \(\left(  *  \right)\), suy ra \(4 < a < \dfrac{{43}}{4}\).

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Hỏi có bao nhiêu giá trị $m$ nguyên trong đoạn $\left[ {0;2017} \right]$ để phương trình $\left| {{x^2} - 4\left| x \right| - 5} \right| - m = 0$ có hai nghiệm phân biệt?

Xem lời giải >>
Bài 2 :

Tìm \(m\) để phương trình \({x^2} - mx + {m^2} - 3 = 0\) có hai nghiệm \({x_1}\), \({x_2}\) là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng \(2\) là

Xem lời giải >>
Bài 3 :

Tất cả các giá trị của tham số \(m\) để phương trình $\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) - 2m\left( {x + \dfrac{1}{x}} \right) + 1 = 0$ có nghiệm là

Xem lời giải >>
Bài 4 :

Tìm tất cả các giá trị thực của \(m\) để phương trình \({x^2} - 4x + 6 + 3m = 0\) có nghiệm thuộc đoạn \(\left[ { - 1;3} \right]\).

Xem lời giải >>
Bài 5 :

Xác định $m$ để phương trình \(m = \left| {{x^2} - 6x - 7} \right|\) có $4$ nghiệm phân biệt.

Xem lời giải >>
Bài 6 :

Hệ phương trình \(\left\{ \begin{array}{l}{x^2} = 3x - y\\{y^2} = 3y - x\end{array} \right.\) có bao nhiêu nghiệm?

Xem lời giải >>
Bài 7 :

Có bao nhiêu giá trị $m$ nguyên để phương trình \(\sqrt {x + 2}  + \sqrt {2 - x}  + 2\sqrt { - {x^2} + 4}  - 2m + 3 = 0\) có nghiệm.

Xem lời giải >>
Bài 8 :

Cho phương trình \(m{x^2} + \left( {{m^2} - 3} \right)x + m = 0\). Tìm tất cả các giá trị của tham số \(m\) để phương trình có hai nghiệm \({x_1}\), \({x_2}\) thỏa mãn \({x_1} + {x_2} = \dfrac{{13}}{4}\). Khi đó tổng bình phương các giá trị tìm được của tham số \(m\) bằng

Xem lời giải >>
Bài 9 :

Một số tự nhiên có hai chữ số có dạng \(\overline {ab} \), biết hiệu của hai chữ số đó bằng \(3\). Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng \(\dfrac{4}{5}\) số ban đầu trừ đi \(10\). Khi đó \({a^2} + {b^2}\) bằng

Xem lời giải >>
Bài 10 :

Có bao nhiêu giá trị nguyên của m để phương trình \({x^2} - 4\sqrt {{x^2} + 1}  - \left( {m - 1} \right) = 0\) có \(4\) nghiệm phân biệt

Xem lời giải >>
Bài 11 :

Tập tất cả các giá trị của tham số \(m\) để phương trình \({x^2} - 2mx + m + 2 = 0\) có hai nghiệm dương phân biệt là

Xem lời giải >>
Bài 12 :

Biết phương trình \(3x + 1 - \sqrt {3{x^2} + 7x}  - \sqrt {3x - 1}  = 0\) có một nghiệm có dạng \(x = \dfrac{{a + \sqrt b }}{c}\), trong đó \(a\), \(b\), \(c\) là các số nguyên tố. Tính \(S = a + b + c\).

Xem lời giải >>
Bài 13 :

Hệ phương trình \(\left\{ \begin{array}{l}{\left( {2x + y} \right)^2} - 5\left( {4{x^2} - {y^2}} \right) + 6\left( {4{x^2} - 4xy + {y^2}} \right) = 0\\2x + y + \dfrac{1}{{2x - y}} = 3\end{array} \right.\) có một nghiệm \(\left( {{x_0}; {y_0}} \right)\) thỏa mãn \({x_0} > \dfrac{1}{2}\). Khi đó \(P = {x_0} + y_0^2\) có giá trị là

Xem lời giải >>
Bài 14 :

Cho hàm số $y =  - {x^2} + 4x - 3$, có đồ thị $\left( P \right)$. Giả sử $d$ là dường thẳng đi qua $A\left( {0;\, - 3} \right)$ và có hệ số góc $k$. Xác định $k$ sao cho $d$ cắt đồ thị $\left( P \right)$ tại $2$ điểm phân biệt $E$, $F$ sao cho $\Delta OEF$ vuông tại $O$ ($O$ là gốc tọa độ). Khi đó

Xem lời giải >>