Đề bài

Có bao nhiêu giá trị nguyên của m để phương trình \({x^2} - 4\sqrt {{x^2} + 1}  - \left( {m - 1} \right) = 0\) có \(4\) nghiệm phân biệt

  • A.

    \(1\).

  • B.

    \(0\).

  • C.

    \(2\).

  • D.

    Vô số.

Phương pháp giải

- Đặt ẩn phụ \(t = \sqrt {{x^2} + 1} \), tìm điều kiện của \(t\)

- Biến đổi phương trình về bậc hai ẩn \(t\) và tìm điều kiện để phương trình có nghiệm thỏa mãn yêu cầu bài toán (sử dụng phương pháp hàm số)

Lời giải của GV Loigiaihay.com

Điều kiện xác định \(x \in \mathbb{R}\).

Đặt \(t = \sqrt {{x^2} + 1} \), \(t \ge 1\).

Phương trình trở thành \({t^2} - 1 - 4t - m + 1 = 0\)\( \Leftrightarrow {t^2} - 4t = m\). \(\left( 2 \right)\)

Để phương trình có \(4\) nghiệm phân biệt thì phương trình \(\left( 2 \right)\) có hai nghiệm phân biệt lớn hơn \(1\).

Xét hàm số \(f\left( t \right) = {t^2} - 4t\) có đồ thị là parabol có hoành độ đỉnh \(x = 2 \in \left( {1; + \infty } \right)\) nên ta có bảng biến thiên:

Dựa BBT ta thấy để $(2)$ có hai nghiệm phân biệt lớn hơn $1$ thì \( - 4 < m <  - 3\).

Vậy không có giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Hỏi có bao nhiêu giá trị $m$ nguyên trong đoạn $\left[ {0;2017} \right]$ để phương trình $\left| {{x^2} - 4\left| x \right| - 5} \right| - m = 0$ có hai nghiệm phân biệt?

Xem lời giải >>
Bài 2 :

Tìm \(m\) để phương trình \({x^2} - mx + {m^2} - 3 = 0\) có hai nghiệm \({x_1}\), \({x_2}\) là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng \(2\) là

Xem lời giải >>
Bài 3 :

Tất cả các giá trị của tham số \(m\) để phương trình $\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) - 2m\left( {x + \dfrac{1}{x}} \right) + 1 = 0$ có nghiệm là

Xem lời giải >>
Bài 4 :

Tìm tất cả các giá trị thực của \(m\) để phương trình \({x^2} - 4x + 6 + 3m = 0\) có nghiệm thuộc đoạn \(\left[ { - 1;3} \right]\).

Xem lời giải >>
Bài 5 :

Xác định $m$ để phương trình \(m = \left| {{x^2} - 6x - 7} \right|\) có $4$ nghiệm phân biệt.

Xem lời giải >>
Bài 6 :

Hệ phương trình \(\left\{ \begin{array}{l}{x^2} = 3x - y\\{y^2} = 3y - x\end{array} \right.\) có bao nhiêu nghiệm?

Xem lời giải >>
Bài 7 :

Có bao nhiêu giá trị $m$ nguyên để phương trình \(\sqrt {x + 2}  + \sqrt {2 - x}  + 2\sqrt { - {x^2} + 4}  - 2m + 3 = 0\) có nghiệm.

Xem lời giải >>
Bài 8 :

Cho phương trình \(m{x^2} + \left( {{m^2} - 3} \right)x + m = 0\). Tìm tất cả các giá trị của tham số \(m\) để phương trình có hai nghiệm \({x_1}\), \({x_2}\) thỏa mãn \({x_1} + {x_2} = \dfrac{{13}}{4}\). Khi đó tổng bình phương các giá trị tìm được của tham số \(m\) bằng

Xem lời giải >>
Bài 9 :

Một số tự nhiên có hai chữ số có dạng \(\overline {ab} \), biết hiệu của hai chữ số đó bằng \(3\). Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng \(\dfrac{4}{5}\) số ban đầu trừ đi \(10\). Khi đó \({a^2} + {b^2}\) bằng

Xem lời giải >>
Bài 10 :

Tập tất cả các giá trị của tham số \(m\) để phương trình \({x^2} - 2mx + m + 2 = 0\) có hai nghiệm dương phân biệt là

Xem lời giải >>
Bài 11 :

Biết phương trình \(3x + 1 - \sqrt {3{x^2} + 7x}  - \sqrt {3x - 1}  = 0\) có một nghiệm có dạng \(x = \dfrac{{a + \sqrt b }}{c}\), trong đó \(a\), \(b\), \(c\) là các số nguyên tố. Tính \(S = a + b + c\).

Xem lời giải >>
Bài 12 :

Hệ phương trình \(\left\{ \begin{array}{l}{\left( {2x + y} \right)^2} - 5\left( {4{x^2} - {y^2}} \right) + 6\left( {4{x^2} - 4xy + {y^2}} \right) = 0\\2x + y + \dfrac{1}{{2x - y}} = 3\end{array} \right.\) có một nghiệm \(\left( {{x_0}; {y_0}} \right)\) thỏa mãn \({x_0} > \dfrac{1}{2}\). Khi đó \(P = {x_0} + y_0^2\) có giá trị là

Xem lời giải >>
Bài 13 :

Cho hàm số $y =  - {x^2} + 4x - 3$, có đồ thị $\left( P \right)$. Giả sử $d$ là dường thẳng đi qua $A\left( {0;\, - 3} \right)$ và có hệ số góc $k$. Xác định $k$ sao cho $d$ cắt đồ thị $\left( P \right)$ tại $2$ điểm phân biệt $E$, $F$ sao cho $\Delta OEF$ vuông tại $O$ ($O$ là gốc tọa độ). Khi đó

Xem lời giải >>
Bài 14 :

Để phương trình sau có \(4\) nghiệm phân biệt: \(\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\). Giá trị của tham số \(a\) là

Xem lời giải >>