Tìm \(m\) để phương trình \({x^2} - mx + {m^2} - 3 = 0\) có hai nghiệm \({x_1}\), \({x_2}\) là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng \(2\) là
-
A.
\(m \in \left( {0;\,2} \right)\).
-
B.
\(m = \pm \sqrt 2 \).
-
C.
\(m \in \left( { - 2;\,0} \right)\).
-
D.
\(m \in \emptyset \).
Đưa điều kiện hình học bài cho về điều kiện đại số và áp dụng định lý Vi – et cho phương trình bậc hai thay vào điều kiện đó tìm \(m\)
Phương trình \({x^2} - mx + {m^2} - 3 = 0\) có hai nghiệm \({x_1}\), \({x_2}\) là độ dài các cạnh góc vuông của một tam giác với cạnh huyền có độ bài bằng \(2\) khi và chỉ khi:
\(\left\{ \begin{array}{l}\Delta = {m^2} - 4{m^2} + 12 \ge 0\\S = {x_1} + {x_2} = m > 0\\P = {x_1}.{x_2} > 0\\x_1^2 + x_2^2 = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3 < {m^2} \le 4\\m > 0\\{\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\sqrt 3 < m \le 2\\{m^2} - 2\left( {{m^2} - 3} \right) = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\sqrt 3 < m \le 2\\{m^2} = 2\end{array} \right.\) \( \Leftrightarrow m \in \emptyset \)
Đáp án : D
Các bài tập cùng chuyên đề
Hỏi có bao nhiêu giá trị $m$ nguyên trong đoạn $\left[ {0;2017} \right]$ để phương trình $\left| {{x^2} - 4\left| x \right| - 5} \right| - m = 0$ có hai nghiệm phân biệt?
Tất cả các giá trị của tham số \(m\) để phương trình $\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) - 2m\left( {x + \dfrac{1}{x}} \right) + 1 = 0$ có nghiệm là
Tìm tất cả các giá trị thực của \(m\) để phương trình \({x^2} - 4x + 6 + 3m = 0\) có nghiệm thuộc đoạn \(\left[ { - 1;3} \right]\).
Xác định $m$ để phương trình \(m = \left| {{x^2} - 6x - 7} \right|\) có $4$ nghiệm phân biệt.
Hệ phương trình \(\left\{ \begin{array}{l}{x^2} = 3x - y\\{y^2} = 3y - x\end{array} \right.\) có bao nhiêu nghiệm?
Có bao nhiêu giá trị $m$ nguyên để phương trình \(\sqrt {x + 2} + \sqrt {2 - x} + 2\sqrt { - {x^2} + 4} - 2m + 3 = 0\) có nghiệm.
Cho phương trình \(m{x^2} + \left( {{m^2} - 3} \right)x + m = 0\). Tìm tất cả các giá trị của tham số \(m\) để phương trình có hai nghiệm \({x_1}\), \({x_2}\) thỏa mãn \({x_1} + {x_2} = \dfrac{{13}}{4}\). Khi đó tổng bình phương các giá trị tìm được của tham số \(m\) bằng
Một số tự nhiên có hai chữ số có dạng \(\overline {ab} \), biết hiệu của hai chữ số đó bằng \(3\). Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng \(\dfrac{4}{5}\) số ban đầu trừ đi \(10\). Khi đó \({a^2} + {b^2}\) bằng
Có bao nhiêu giá trị nguyên của m để phương trình \({x^2} - 4\sqrt {{x^2} + 1} - \left( {m - 1} \right) = 0\) có \(4\) nghiệm phân biệt
Tập tất cả các giá trị của tham số \(m\) để phương trình \({x^2} - 2mx + m + 2 = 0\) có hai nghiệm dương phân biệt là
Biết phương trình \(3x + 1 - \sqrt {3{x^2} + 7x} - \sqrt {3x - 1} = 0\) có một nghiệm có dạng \(x = \dfrac{{a + \sqrt b }}{c}\), trong đó \(a\), \(b\), \(c\) là các số nguyên tố. Tính \(S = a + b + c\).
Hệ phương trình \(\left\{ \begin{array}{l}{\left( {2x + y} \right)^2} - 5\left( {4{x^2} - {y^2}} \right) + 6\left( {4{x^2} - 4xy + {y^2}} \right) = 0\\2x + y + \dfrac{1}{{2x - y}} = 3\end{array} \right.\) có một nghiệm \(\left( {{x_0}; {y_0}} \right)\) thỏa mãn \({x_0} > \dfrac{1}{2}\). Khi đó \(P = {x_0} + y_0^2\) có giá trị là
Cho hàm số $y = - {x^2} + 4x - 3$, có đồ thị $\left( P \right)$. Giả sử $d$ là dường thẳng đi qua $A\left( {0;\, - 3} \right)$ và có hệ số góc $k$. Xác định $k$ sao cho $d$ cắt đồ thị $\left( P \right)$ tại $2$ điểm phân biệt $E$, $F$ sao cho $\Delta OEF$ vuông tại $O$ ($O$ là gốc tọa độ). Khi đó
Để phương trình sau có \(4\) nghiệm phân biệt: \(\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\). Giá trị của tham số \(a\) là