Ông An muốn thiết kế một mái che giếng trời hình chóp di động để có thể tùy thích lấy ánh sáng cho ngôi nhà của mình. Biết rằng đáy hình chóp là hình chữ nhật có độ dài hai cạnh đáy là 3 m và 2 m; các cạnh bên bằng nhau (như hình vẽ minh họa). Ông An mong muốn góc giữa mặt phẳng (SBC) và mặt đáy là \(\alpha \) thỏa mãn \({30^o} \le \alpha \le {45^o}\), đồng thời khoảng cách từ điểm A tới mặt phẳng (SBC) là lớn nhất. Tính khoảng cách lớn nhất đó (làm tròn kết quả đến chữ số thập phân thứ hai).
Mô hình hóa mái che thành khối chóp S.ABCD.
Áp dụng quy tắc tính khoảng cách từ điểm đến mặt phẳng, xác định góc giữa hai mặt phẳng trong không gian.
Mô hình hóa mái che thành khối chóp S.ABCD như hình. ABCD là hình chữ nhật, O là giao điểm của AC và BD.
Vì các cạnh bên bằng nhau nên \(SO \bot (ABCD)\).
Gọi I là trung điểm của BC. Khi đó \(SI \bot BC\).
Kẻ \(OH \bot SI\), H thuộc SI.
Ta có \(\left\{ \begin{array}{l}SO \bot (ABCD) \Rightarrow SO \bot BC\\SI \bot BC\end{array} \right. \Rightarrow BC \bot (SOI) \Rightarrow BC \bot OH\).
Mặt khác \(\left\{ \begin{array}{l}OH \bot SI\\OH \bot BC\end{array} \right. \Rightarrow OH \bot (SBC) \Rightarrow d\left( {O,(SBC)} \right) = OH\).
Vì AC = 2OC nên \(d\left( {A,(SBC)} \right) = 2d\left( {O,(SBC)} \right) = 2OH\).
Ông An mong muốn \(d\left( {A,(SBC)} \right)\) max, tức là OH max.
Dễ dàng chứng minh \(\alpha = \left( {(SBC),(ABCD)} \right) = \widehat {SIO}\).
Ta có \({30^o} \le \alpha \le {45^o} \Leftrightarrow \sin {30^o} \le \sin \widehat {SIO} \le \sin {45^o}\)
\( \Leftrightarrow \frac{1}{2} \le \frac{{OH}}{{OI}} \le \frac{{\sqrt 2 }}{2} \Leftrightarrow \frac{{OI}}{2} \le OH \le \frac{{OI\sqrt 2 }}{2}\).
Suy ra OH lớn nhất khi bằng \(\frac{{OI\sqrt 2 }}{2} = \frac{{AB\sqrt 2 }}{4}\).
Mà AB = 2 m hoặc AB = 3 m. Vậy giá trị lớn nhất của OH là \(\frac{{3\sqrt 2 }}{4}\) khi AB = 3.
Vậy giá trị lớn nhất của \(d\left( {A,(SBC)} \right) = 2OH = \frac{{3\sqrt 2 }}{2} \approx 2,12\) (m).
Các lý thuyết được ứng dụng trong bài:
1. Mô hình hóa hình học:
Biểu diễn một vật thể thực tế (mái che giếng trời) bằng một mô hình toán học (hình chóp).
2. Tính chất của hình chóp có các cạnh bên bằng nhau:
Nếu các cạnh bên của hình chóp bằng nhau, thì hình chiếu vuông góc của đỉnh lên mặt đáy trùng với tâm đường tròn ngoại tiếp đáy.
3. Xác định góc giữa hai mặt phẳng:
Góc giữa hai mặt phẳng cắt nhau là góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng đó và cùng vuông góc với giao tuyến của chúng tại một điểm.
4. Khoảng cách từ một điểm đến một mặt phẳng:
Khoảng cách từ một điểm M đến mặt phẳng (P) là độ dài đoạn thẳng MH, trong đó H là hình chiếu vuông góc của M lên (P). Để tính khoảng cách, ta thường dựng đường thẳng đi qua M vuông góc với (P) và tìm giao điểm H.
5. Hệ thức lượng trong tam giác vuông:
sin (góc) = cạnh đối / cạnh huyền;
cos (góc) = cạnh kề / cạnh huyền;
tan (góc) = cạnh đối / cạnh kề;
cot (góc) = cạnh kề / cạnh huyền.
Các bài tập cùng chuyên đề
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.
a) Tính độ dài đường chéo của hình lập phương.
b) Chứng minh rằng (ACC′A′) \( \bot \) (BDD′B′).
c) Gọi O là tâm của hình vuông ABCD. Chứng minh rằng \(\widehat {COC'}\) là một góc phẳng của góc nhị diện [C, BD, C']. Tính (gần đúng) số đo của các góc nhị diện [C, BD, C'], [A, BD, C'].
Cho hình hộp chữ nhật ABCD. A'B'C'D'.
a) Chứng minh rằng (BDD′B′) \( \bot \) (ABCD).
b) Xác định hình chiếu của AC′ trên mặt phẳng (ABCD).
c) Cho AB = a, BC = b, CC′ = c. Tính AC′.
Cho hình chóp đều S.ABC, đáy có cạnh bằng a, cạnh bên bằng b.
a) Tính sin của góc tạo bởi cạnh bên và mặt đáy.
b) Tính tang của góc giữa mặt phẳng chứa mặt đáy và mặt phẳng chứa mặt bên.
Cho hình lập phương ABCD.A'B'C'D' có cạnh a.
a) Chứng minh rằng hai mặt phẳng (D'AC) và (BC'A') song song với nhau và DB' vuông góc với hai mặt phẳng đó.
b) Xác định các giao điểm E, F của DB' với (D'AC), (BC'A'). Tính d((D'AC), (BC'A')).
Cho các phát biểu sau:
(1) Hai mặt phẳng \((P)\) và \((Q)\) có giao tuyến là đường thẳng a và cùng vuông góc với mặt phẳng \((R)\) thì \(a \bot (R)\).
(2) Hai mặt phẳng \((P)\) và \((Q)\) vuông góc với nhau và có giao tuyến là đường thẳng a, một đường thẳng \(b\) nằm trong mặt phẳng \((P)\) và vuông góc với đường thẳng \(a\) thì \(b \bot (Q)\).
(3) Mặt phẳng \(({\rm{P}})\) chứa đường thẳng a và a vuông góc với \((Q)\) thì \((P) \bot (Q)\).
(4) Đường thẳng a nằm trong mặt phẳng \((P)\) và mặt phẳng \((P)\) vuông góc với mặt phẳng (Q) thì \(a \bot (Q)\).
Số phát biểu đúng trong các phát biểu trên là:
A. 1.
B. 2.
C. 3.
D. 4.
Cho tứ diện ABCD có tam giác ABC cân tại \(A\), tam giác BCD cân tại \(D\). Gọi I là trung điểm của cạnh BC.
a) Chứng minh rằng \(BC \bot (AID)\).
b) Kẻ đường cao AH của tam giác AID. Chứng minh rằng \(AH \bot (BCD)\).
c) Kẻ đường cao IJ của tam giác AID. Chứng minh rằng IJ là đường vuông góc chung của AD và BC.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(B,BC = \) a và \(\widehat {CAB} = {30^0}\). Biết \(SA \bot (ABC)\) và \(SA = a\sqrt 2 \).
a) Chứng minh rằng \((SBC) \bot (SAB)\).
b) Tính theo a khoảng cách từ điểm \(A\) đến đường thẳng SC và khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết tam giác SAD vuông cân tại \(S\) và \((SAD) \bot (ABCD)\).
a) Tính theo a thể tích của khối chóp S.ABCD.
b) Tính theo a khoảng cách giữa hai đường thẳng AD và SC.
Cho hình hộp \(ABCD.A'B'C'D'\) có độ dài tất cả các cạnh bằng \(a,AA' \bot (ABCD)\) và \(\widehat {BAD} = {60^0}\).
a) Tính thể tích của khối hộp \(ABCD.A'B'C'D'\).
b) Tính khoảng cách từ \(A\) đến mặt phẳng \(\left( {A'BD} \right)\).
Cho hai tam giác cân \(ABC\) và \(ABD\) có đáy chung \(AB\) và không cùng nằm trong một mặt phẳng.
a) Chứng minh rằng \(AB \bot CD\).
b) Xác định đoạn vuông góc chung của \(AB\) và \(C{\rm{D}}\).
Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\) và có \(O\) là giao điểm hai đường chéo của đáy.
a) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB\).
b) Tinh thể tích của khối chóp.
Cho hình vuông \(ABCD\) và tam giác đều \(SAB\) cạnh \(a\) nằm trong hai mặt phẳng vuông góc với nhau. Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\).
a) Chứng minh rằng \(\left( {SMD} \right) \bot \left( {SNC} \right)\).
b) Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {SNC} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\); \(AB = AD = 2a;CD = a\); số đo góc nhị diện \(\left[ {S,BC,A} \right]\) bằng \({60^ \circ }\). Gọi \(I\) là trung điểm của cạnh \(A{\rm{D}}\). Biết hai mặt phẳng \(\left( {SBI} \right)\) và \(\left( {SCD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Tính thể tích khối chóp \(S.ABCD\) theo \(a\).
Một chân cột bằng gang có dạng hình chóp cụt tứ giác đều có cạnh đáy lớn bằng \(2a\), cạnh đáy nhỏ bằng \(a\), chiều cao \(h = 2a\) và bán kính đáy phần trụ rỗng bên trong bằng \(\frac{a}{2}\).
a) Tìm góc phẳng nhị diện tạo bởi mặt bên và mặt đáy.
b) Tính thể tích chân cột nói trên theo \(a\).
Cho tứ diện OABC có \(OA = OB = OC = a,\widehat {AOB} = \widehat {AOC} = {60^0}\) và \(\widehat {BOC} = {90^0}\).
a) Chứng minh rằng \((OBC) \bot (ABC)\).
b) Tính theo a khoảng cách từ \(O\) đến mặt phẳng \((ABC)\) và thể tích khối tứ diện OABC.
Cho hình chóp \(S.ABCD\) có đáy ABCD là hình vuông cạnh a. Biết \(SA \bot (ABCD)\) và \(SA = a\sqrt 2 \). Mặt phẳng \((P)\) đi qua điểm \(A\) và vuông góc với đường thẳng SC, cắt các cạnh SC, SB, SD lần lượt tại M, E, F.
a) Chứng minh rằng \(AE \bot (SBC)\).
b) Tính theo a thể tích khối chóp S.ABCD và hình chóp S.AEMF.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \(\widehat {BAD} = {60^0}\). Biết \(SA \bot (ABCD)\) và \(SA = a\).
a) Chứng minh rằng \(BD \bot SC\).
b) Tính theo a khoảng cách giữa hai đường thẳng BD và SC.
Cho hình chóp \(S.ABCD\) có đáy ABCD là hình chữ nhật, \(AD = a,AB = a\sqrt 2 \). Biết \(SA \bot (ABCD)\) và \(SA = a\sqrt 3 \). Gọi \(M\) là trung điểm của cạnh CD.
a) Chứng minh rằng \(BD \bot (SAM)\).
b) Tính theo a thể tích khối chóp S.ABMD.
Cho hình chóp đều \(S.ABCD\) có các cạnh bên và các cạnh đáy đều bằng \(a\).
a) Chứng minh rằng các tam giác \(ASC\) và \(BSD\) là tam giác vuông cân.
b) Gọi \(O\) là giao điểm của \(AC\) và \(B{\rm{D}}\), chứng minh rằng đường thẳng \(SO\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).
c) Chứng minh rằng góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({45^ \circ }\).
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Góc giữa đường thẳng \(AC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({60^ \circ }\).
a) Chứng minh rằng hai mặt phẳng \(\left( {ACC'A'} \right)\) và \(\left( {BDD'B'} \right)\) vuông góc với nhau.
b) Tính khoảng cách giữa hai đường thẳng \(AB\) và \(CD'\).
Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).
a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:
A. \({30^ \circ }\).
B. \({45^ \circ }\).
C. \({60^ \circ }\).
D. \({90^ \circ }\).
b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:
A. 1.
B. 2.
C. \(\sqrt 2 \).
D. \(\frac{1}{{\sqrt 2 }}\).
c) Số đo của góc nhị diện \(\left[ {N,MM',P} \right]\) bằng:
A. \({30^ \circ }\).
B. \({45^ \circ }\).
C. \({60^ \circ }\).
D. \({90^ \circ }\).
d) Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {NQQ'N'} \right)\) bằng:
A. \(a\).
B. \(\frac{a}{{\sqrt 2 }}\).
C. \(a\sqrt 2 \).
D. \(\frac{a}{2}\).
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),AC \bot BC,\)\(SA = BC = a\sqrt 3 ,AC = a\) (Hình 99).
a) Tính góc giữa hai đường thẳng \(SA\) và \(BC\).
b) Tính góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABC} \right)\).
c) Tính số đo của góc nhị diện \(\left[ {B,SA,C} \right]\).
d) Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\).
e) Tính khoảng cách giữa hai đường thẳng \(SA\) và \(BC\).
g) Tính thể tích của khối chóp \(S.ABC\).
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(AB\) (Hình 100).
a) Tính góc giữa hai đường thẳng \(AB\) và \(B'C'\).
b) Tính góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\).
c) Tính số đo của góc nhị diện \(\left[ {B,CC',M} \right]\).
d) Chứng minh rằng \(CC'\parallel \left( {ABB'A'} \right)\). Tính khoảng cách giữa đường thẳng \(CC'\) và mặt phẳng \(\left( {ABB'A'} \right)\).
e) Chứng minh rằng \(CM \bot \left( {ABB'A'} \right)\). Tính khoảng cách giữa hai đường thẳng \(CC'\) và \(A'M\).
g) Tính thể tích của khối lăng trụ tam giác đều \(ABC.A'B'C'\) và thể tích khối chóp \(A'.MBC\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Gọi H, M lần lượt là trung điểm của các cạnh AD và AB.
a) Tính côsin của góc giữa đường thẳng SC và mặt đáy (ABCD).
b) Chứng minh rằng \(\left( {SMD} \right) \bot \left( {SHC} \right)\).
Cho hình hộp ABCD.A’B’C’D’, gọi M là trung điểm của AA’. Tỷ số của thể tích khối chóp M.ABCD và khối hộp ABCD.A’B’C’D’ bằng
A. \(\frac{1}{3}\).
B. \(\frac{1}{2}\).
C. \(\frac{1}{6}\).
D. \(\frac{2}{3}\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và \(SC = a\sqrt 2 \). Gọi H là trung điểm cạnh AB.
a) Chứng minh rằng \(SH \bot (ABCD)\).
b) Tính theo \(a\) thể tích khối chóp \(S.ABCD\).
c) Tính theo \(a\) khoảng cách từ điểm A đến mặt phẳng \(\left( {SBD} \right)\).
Cho hình chóp S.ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \).
a) Chứng minh rằng\((SAC) \bot (SBD)\) và \((SAD) \bot (SCD)\).
b) Gọi BE, DF là hai đường cao của tam giác SBD. Chứng minh \((ACF) \bot (SBC)\) và \((AEF) \bot (SAC)\).
c) Tính theo a khoảng cách giữa hai đường thẳng BD và SC.
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, cạnh bên \(SA = \frac{{a\sqrt 5 }}{2}\). Gọi SM, SN lần lượt là đường cao của tam giác SAD và tam giác SBC.
a) Chứng minh rằng \(\left( {SMN} \right) \bot \left( {ABCD} \right)\).
b) Tính số đo của góc nhị diện \([S,AD,B]\).
c) Tính theo a thể tích khối chóp \(S.ABCD\).
Cho hình lăng trụ đứng \(ABC \cdot A'B'C'\) có \(\widehat {BAC} = {60^ \circ },AB = 2a,AC = 3a\) và số đo của góc nhị diện \(\left[ {A',BC,A} \right]\) bằng \({45^ \circ }\).
a) Tính theo \(a\) khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {A'BC} \right)\).
b) Tính theo \(a\) thể tích khối lăng trụ \(ABC.A'B'C'\).
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD.
a) Tính theo a thể tích khối chóp cụt AMN.A'B'D'.
b) Tính theo a khoảng cách giữa hai đường thẳng MN và A'B.