Đề bài

Cho phép vị tự tâm O, tỉ số k biến điểm M thành điểm M'¸điểm N thành điểm N'.

a) Biểu diễn các vectơ \(\overrightarrow {OM'} ,\,\overrightarrow {ON'} \) tương ứng theo các vectơ \(\overrightarrow {OM} ,\,\overrightarrow {ON} \).

b) Giải thích vì sao \(\overrightarrow {M'N'}  = k\overrightarrow {MN} \).

Phương pháp giải

- Dựa và quy tắc hiệu \(\overrightarrow {OB}  - \overrightarrow {OA}  = \overrightarrow {AB} \).

- Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\).

Lời giải của GV Loigiaihay.com

a) Phép vị tự tâm O, tỉ số k biến điểm M thành điểm M', điểm N thành điểm N' nên ta có \(\overrightarrow {OM'}  = k\overrightarrow {OM} \) và \(\overrightarrow {ON'}  = k\overrightarrow {ON} \).

b) Ta có: \(\overrightarrow {M'N'}  = \overrightarrow {ON'}  - \overrightarrow {OM'}  = k\overrightarrow {ON}  - K\overrightarrow {OM}  = k\left( {\overrightarrow {ON}  - \overrightarrow {OM} } \right) = k\overrightarrow {MN} \) (theo quy tắc hiệu).

Vậy \(\overrightarrow {M'N'}  = k\overrightarrow {MN} \).

Các bài tập cùng chuyên đề

Bài 1 :

Quan sát hai bức tranh em bé ôm chú gà ở phần mở đầu bài học và chỉ ra phép vị tự biến bức tranh nhỏ thành bức tranh lớn và phép vị tự biến bức tranh lớn thành bức tranh nhỏ.

Xem lời giải >>
Bài 2 :

Chứng minh rằng, phép vị tự \({V_{(O,{\rm{ }}1)}}\) là phép đồng nhất, phép vị tự \({V_{\left( {o,-1} \right)}}\;\) là phép đối xứng tâm O.

Xem lời giải >>
Bài 3 :

Phép vị tự \({V_{(O,{\rm{ }}k)}}\) ­ biến điểm O thành điểm nào? Nếu phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm M thành điểm M' thì phép vị tự \({V_{\left( {O,\frac{1}{k}} \right)}}\)  biến điểm M' thành điểm nào?

Xem lời giải >>
Bài 4 :

Trong hai bức tranh ở Hình 1.41, các hình chữ nhật ABCD, A'B'C'D' có các cạnh tương ứng song song, bức tranh lớn có kích thước gấp đôi bức tranh nhỏ.

a) Giải thích vì sao các đường thẳng AA', BB', CC', DD' cùng đi qua một điểm O.

b) Hãy tính các tỉ số \(\frac{{OA}}{{OA'}},\,\frac{{OB}}{{OB'}},\,\frac{{OC}}{{OC'}},\,\frac{{OD}}{{OD'}}\).

c) Dùng thước thẳng nối hai điểm tương ứng nào đó trên hai bức tranh (chẳng hạn, đầu mỏ trên của chú gà ở hai bức tranh). Đường thẳng đó có đi qua O hay không?

Xem lời giải >>
Bài 5 :

 Quan sát Hình 1.47 và cho biết hình nào trong hai hình nhỏ không phải là ảnh của hình lớn qua một phép vị tự. Nêu lí do cho sự lựa chọn đó.

Xem lời giải >>
Bài 6 :

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 1)2 + (y – 2)2 = 25.

a) Tìm tâm I và bán kính R của đường tròn (C).

b) Tìm tâm I' và bán kính R' của đường tròn (C') là ảnh của đường tròn (C) qua phép vị tự tâm A(3; 5), tỉ số 2.

c) Viết phương trình của (C').

Xem lời giải >>
Bài 7 :

Cho hình thang ABCD có hai đáy AB và CD, CD = 2AB. Gọi O là giao của hai cạnh bên và I là giao của hai đường chéo. Tìm ảnh của đoạn thẳng AB qua các phép vị tự V(O, 2), V(I, – 2).

Xem lời giải >>
Bài 8 :

Trong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 6). Viết phương trình đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự \({V_{(O,3)}}\).

Xem lời giải >>
Bài 9 :

Ở Hình 1.48, A', B', C', D', E' tương ứng là trung điểm của các đoạn thẳng IA, IB, IC, ID, IE. Hỏi năm điểm đó có thuộc một đường tròn hay không? Vì sao?

Xem lời giải >>
Bài 10 :

Quan sát ba hình được tô màu ở Hình 1.49, hình nhỏ nào là ảnh của hình lớn qua một phép vị tự?

Xem lời giải >>
Bài 11 :

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 1)2 + (y + 2)2 = 9. Phép vị tự tâm O(0; 0) với tỉ số k = –2 biến đường tròn (C) thành đường tròn (C'). Viết phương trình đường tròn (C').

Xem lời giải >>