Đề bài

Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:

a) $\Delta ANP\backsim \Delta HBA$ và $\Delta MCN\backsim \Delta MPB$;

b) \(\frac{{MB}}{{MC}}.\frac{{NC}}{{NA}}.\frac{{PA}}{{PB}} = 1\)

Phương pháp giải

a) Sử dụng kiến thức về định lý (trường hợp đồng dạng góc – góc) để chứng minh tam giác đồng dạng: Nếu hai góc của tam giác lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

b) Sử dụng định lí Thalès để chứng minh: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

Lời giải của GV Loigiaihay.com

Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = {90^0}\)

Mà \(\widehat {BAC} + \widehat {PAN} = {180^0}\) (hai góc kề bù)

Do đó \(\widehat {PAN} = {90^0}\)

Vì \(AH \bot BC\) (do AH là đường cao của tam giác ABC) nên \(\widehat {AHB} = \widehat {AHC} = {90^0}\)

Vì \(MN \bot BC\) nên \(\widehat {NMC} = \widehat {NMB} = {90^0}\)

Vì \(MN \bot BC\), \(AH \bot BC\) nên MN//AH

Do đó, \(\widehat P = \widehat {HAB}\) (hai góc đồng vị)

Tam giác ANP và tam giác HBA có:

\(\widehat {NAP} = \widehat {AHB} = {90^0},\)\(\widehat P = \widehat {HAB}\) (cmt)

Do đó, $\Delta ANP\backsim \Delta HBA\left( g-g \right)$

Tam giác MCN và tam giác MPB có:

\(\widehat {NMC} = \widehat {NMB} = {90^0},\widehat C = \widehat P\) (cùng phụ với góc B)

Do đó, $\Delta MCN\backsim \Delta MPB\left( g-g \right)$

b) Ta có: \(\frac{{MB}}{{MC}}.\frac{{NC}}{{NA}}.\frac{{PA}}{{PB}} = \frac{{MB}}{{PB}}.\frac{{NC}}{{NA}}.\frac{{PA}}{{MC}}\)

Tam giác PMB có: PM//AH nên theo định lí Thalès ta có: \(\frac{{MB}}{{MH}} = \frac{{PB}}{{PA}}\), suy ra \(\frac{{MB}}{{PB}} = \frac{{MH}}{{PA}}\)

Tam giác AHC có: MN//AH nên theo định lí Thalès ta có: \(\frac{{NC}}{{NA}} = \frac{{MC}}{{MH}}\)

Do đó: \(\frac{{MB}}{{PB}}.\frac{{NC}}{{NA}}.\frac{{PA}}{{MC}} = \frac{{MH}}{{PA}}.\frac{{MC}}{{MH}}.\frac{{PA}}{{MC}} = 1\)

Các bài tập cùng chuyên đề

Bài 1 :

Trong hình 9.72, cho AH, HE, HF lần lượt là các đường cao của các tam giác ABC, AHB, AHC. Chứng minh rằng

a) ΔAEH ∽ ΔAHB 

b) ΔAFH ∽ ΔAHC 

c) ΔAFE ∽ ΔABC 

Xem lời giải >>
Bài 2 :

Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm. Gọi AH, HD lần lượt là các đường cao kẻ từ đỉnh A của tam giác ABC và đỉnh H của tam giác HAB
a) Chứng minh rằng ΔHDA ∽ ΔAHC 

b) Tính độ dài các đoạn thẳng HA, HB, HC, HD

Xem lời giải >>
Bài 3 :

Tính các độ dài x, y, z, t ở các hình 104a, 104b, 104c.

Xem lời giải >>
Bài 4 :

Tính độ dài \(AF\) và \(EF\) trong Hình 6.112.

 

Xem lời giải >>
Bài 5 :

Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:

a) \(HA.HD = HB.HE = HC.HF\);

b) $\Delta AFC\backsim \Delta AEB$ và $AF.AB=AE.AC\,;$

c) $\Delta BDF\backsim \Delta EDC$ và DA là tia phân giác của góc EDF.

Xem lời giải >>
Bài 6 :

Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:

a) $\Delta BDF\backsim \Delta BAC$ và $\Delta CDE\backsim \Delta CAB$;

b) \(BF.BA + CE.CA = B{C^2}\)

Xem lời giải >>
Bài 7 :

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC. Chứng minh rằng:

a) \(AM.AB = A{H^2}\) và \(AM.AB = AN.AC\)

b) $\Delta AMN\backsim \Delta ACB$

Xem lời giải >>
Bài 8 :

Cho ABC và A’B’C’ lần lượt là các tam giác vuông tại đỉnh A và A’. Gọi M, M’ lần lượt là trung điểm của AC và A’C’. Chứng minh rằng:

a) \(B{C^2} + 3B{A^2} = 4B{M^2}\) và \(B'C{'^2} + 3B'A{'^2} = 4B'M{'^2}\);

b) Nếu \(\frac{{BC}}{{BM}} = \frac{{B'C'}}{{B'M'}}\) thì $\Delta ABC\backsim \Delta A'B'C'$.

Xem lời giải >>
Bài 9 :

Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.

a) Chứng minh rằng \(CM \bot DN\).

b) Biết \(AB = 4cm,\) hãy tính diện tích tam giác ONC.

Xem lời giải >>
Bài 10 :

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N, P lần lượt là trung điểm của HA, HB, HC. Chứng minh rằng:

a) $\Delta MNP\backsim \Delta ABC$ và tìm tỉ số đồng dạng

b) $\Delta ABN\backsim \Delta CAM$ và $\Delta ACP\backsim \Delta BAM$

c) \(AN \bot CM\) và \(AP \bot BM\)

Xem lời giải >>
Bài 11 :

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là trung điểm của AH, AB. Chứng minh rằng $\Delta CAM\backsim \Delta CBN$ và $\Delta CHM\backsim \Delta CAN$

Xem lời giải >>
Bài 12 :

Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Cho điểm M nằm trên cạnh BC sao cho BM = 4cm. Vẽ đường thẳng MN vuông góc với AC tại N và đường thẳng MP vuông góc với AB.

a) Chứng minh ΔBMP ∽ ΔMCN 

b) Tính độ dài đoạn thẳng AM

Xem lời giải >>
Bài 13 :

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M,N lần lượt là các điểm trên các đoạn thẳng AB, AH sao cho AM = 2.MB, AN = $\frac{1}{2}$NH.

Chứng minh rằng $\Delta CAN\backsim \Delta CBM$ và $\Delta CHN\backsim \Delta CAM$.

Xem lời giải >>
Bài 14 :

Cho tam giác ABC vuông tại A và các điểm D, E, F như Hình 9.77 sao cho AD là phân giác của góc BAC, DE và DF lần lượt vuông góc với AC và BC. Chứng minh rằng:

a) \(\frac{B\text{D}}{BC}=\frac{AB}{AB+AC}\), từ đó suy ra \(A\text{E}=\frac{AB.AC}{AB+AC}\);

b) ΔDFC ∽ ΔABC;

c) DF = DB

Xem lời giải >>