Gieo một con xúc xắc 4 mặt cân đối và đồng chất ba lần. Tính xác suất của các biến cố:
a) “Tổng các số xuất hiện ở đỉnh phía trên của con xúc xắc trong 3 lần gieo lớn hơn 2”.
b) “Có đúng một lần số xuất hiện ở đỉnh phía trên của con xúc xắc là 2”.
Phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là 1 biến cố.
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \).
a) Vì số chấm trên mỗi mặt của xúc xắc đều lớn hơn hoặc bằng 1, nên sau ba lần gieo, tổng số chấm sẽ luôn lớn hơn hoặc bằng 3 (hay lớn hơn 2).
Do đó biến cố A: “Tổng các số xuất hiện ở đỉnh phía trên của con xúc xắc trong 3 lần gieo lớn hơn 2” chắc chắn xảy ra. Vậy \(P\left( A \right) = 1\).
b) Gieo xúc xắc 3 lần. Mỗi lần, số xuất hiện ở đỉnh đều có 4 kết quả (1, 2, 3, 4).
Do đó \(n\left( \Omega \right) = 4.4.4 = 64\).
Gọi B là biến cố “Có đúng một lần số xuất hiện ở đỉnh phía trên của con xúc xắc là 2”.
Bước 1: Chọn 1 lần trong 3 lần để xuất hiện số 2 ở đỉnh: Có 3 cách.
Bước 2: Trong 2 lần còn lại, số ở đỉnh đều có 3 kết quả có thể xảy ra (1, 3, 4).
=> Có 3.3 = 9 (kết quả).
Theo quy tắc nhân, ta có: \(n\left( B \right) = 3.3.3 = 27\).
\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{27}}{{64}}\).
Vậy xác xuất của biến cố B là \(\frac{{27}}{{64}}\).
Các bài tập cùng chuyên đề
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6.
Hai bạn An và Bình mỗi người gieo một con xúc xắc cân đối. Tính xác suất để:
a) Số chấm xuất hiện trên hai con xúc xắc bé hơn 3;
b) Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5;
c) Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6;
d) Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.
Rút ngẫu nhiên ra một thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30. Xác suất để số trên tấm thẻ được rút ra chia hết cho 5 là:
A. \(\frac{1}{{30}}\)
B. \(\frac{1}{5}\)
C. \(\frac{1}{3}\)
D. \(\frac{2}{5}\)
Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 4 là:
A. \(\frac{1}{7}\)
B. \(\frac{1}{6}\)
C. \(\frac{1}{8}\)
D. \(\frac{2}{9}\)
Có hộp I và hộp II, mỗi hộp chứa 5 tấm thẻ đánh số từ 1 đến 5. Từ mỗi hộp, rút ngẫu nhiên ra một tấm thẻ. Tính xác suất để thẻ rút ra từ hộp II mang số lớn hơn số trên thẻ rút ra từ hộp I .
Gieo một đồng xu và một con xúc xắc đồng thời. Tính xác suất của biến cố A: “Đồng xu xuất hiện mặt sấp hoặc con xúc xắc xuất hiện mặt 5 chấm”.
Tại một quán ăn, lúc đầu có 50 khách trong đó có 2x đàn ông và y phụ nữ. Sau một tiếng, y – 6 đàn ông ra về và 2x – 5 khách mới đến là nữ. Chọn ngẫu nhiên một khách. Biết rằng xác suất để chọn được một khách nữ là \(\frac{9}{{13}}\). Tìm x và y.
Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc.
a) Xác suất để An không đứng cuối hàng là:
A. \(\frac{2}{3}\).
B. \(\frac{1}{3}\).
C. \(\frac{3}{5}\).
D. \(\frac{2}{5}\).
b) Xác suất để Bình và Cường đứng cạnh nhau là
A. \(\frac{1}{4}\).
B. \(\frac{2}{3}\).
C. \(\frac{2}{5}\).
D. \(\frac{1}{2}\).
c) Xác suất để An đứng giữa Bình và Cường là
A. \(\frac{2}{3}\).
B. \(\frac{1}{3}\).
C. \(\frac{3}{5}\).
D. \(\frac{2}{5}\).
d) Xác suất để Bình đứng trước An là
A. \(\frac{1}{4}\).
B. \(\frac{2}{3}\).
C. \(\frac{2}{5}\).
D. \(\frac{1}{2}\).
Chọn ngẫu nhiên 5 số trong tập S = {1; 2; ...; 20}. Xác suất để cả 5 số được chọn không vượt quá 10 xấp xỉ là:
A. \(0,016\).
B. \(0,013\).
C. \(0,014\).
D. \(0,015\).
Gieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là:
A. \(\frac{5}{{22}}\).
B. \(\frac{1}{5}\).
C. \(\frac{2}{9}\).
D. \(\frac{7}{{34}}\).
Một cửa hàng bán ba loại kem: xoài, sô cô la và sữa. Một học sinh chọn mua ba cốc kem một cách ngẫu nhiên. Tính xác suất để ba cốc kem chọn được thuộc hai loại.
A. \(\frac{{10}}{{19}}\)
B. \(\frac{1}{{18}}\)
C. \(\frac{9}{{19}}\)
D. \(\frac{1}{{38}}\)
A. \(\frac{5}{8}\).
B. \(\frac{3}{8}\).
C. \(\frac{8}{5}\).
D. \(\frac{8}{3}\).