Chuyển động của một vật có phương trình \(s = 5 + {\rm{sin}}\left( {0,8\pi t + \frac{\pi }{6}} \right)\), ở đó tính bằng centimét và thời gian tính bằng giây. Tại các thời điểm vận tốc bằng 0, giá trị tuyệt đối của gia tốc của vật gần với giá trị nào sau đây nhất?
A. \(4,5\,{\rm{cm/}}{{\rm{s}}^2}\).
B. \(5,5\,{\rm{cm/}}{{\rm{s}}^2}\).
C. \(6,3\,{\rm{cm/}}{{\rm{s}}^2}\).
D. \(7,1\,{\rm{cm/}}{{\rm{s}}^2}\).
\(v(t) = s'(t) = 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
\(a(t) = s''(t) = - {\left( {0,8\pi } \right)^2}.\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Cho vận tốc bằng 0 suy ra \(\cos \left( {0,8\pi t + \frac{\pi }{6}} \right) \Rightarrow \sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Khi đó giá trị tuyệt đối của gia tốc của vật \(\left| {a(t)} \right| = {\left( {0,8\pi } \right)^2}.\left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right|\)
\(v(t) = s'(t) = 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
\(a(t) = s''(t) = - {\left( {0,8\pi } \right)^2}.\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Vận tốc bằng 0\( \Rightarrow 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right) = 0 \Leftrightarrow \cos \left( {0,8\pi t + \frac{\pi }{6}} \right) = 0 \Rightarrow \left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right| = 1\)
Khi đó giá trị tuyệt đối của gia tốc của vật \(\left| {a(t)} \right| = {\left( {0,8\pi } \right)^2}.\left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right| = {\left( {0,8\pi } \right)^2}.1 \approx 6,3\)
Các bài tập cùng chuyên đề
Hàm số \(y = \frac{1}{{x + 1}}\) có đạo hàm cấp hai tại \(x = 1\) là
A. \(y''\left( 1 \right) = \frac{1}{2}\).
B. \(y''\left( 1 \right) = - \frac{1}{4}\).
C. \(y''\left( 1 \right) = 4\).
D. \(y''\left( 1 \right) = \frac{1}{4}\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = {x^3} - 4{x^2} + 2x - 3\);
b) \(y = {x^2}{e^x}\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = {x^2} - x\);
b) \(y = \cos x\).
Một hòn sỏi rơi tự do có quãng đường rơi tính theo thời gian \(t\) là \(s\left( t \right) = 4,9{t^2}\), trong đó \(s\) tính bằng mét và \(t\) tính bằng giây. Tính gia tốc rơi của hòn sỏi lúc \(t = 3\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = 2{x^4} - 5{x^2} + 3\);
b) \(y = x{e^x}\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = x{e^{2x}};\)
b) \(y = \ln \left( {2x + 3} \right).\)
Cho hàm số \(f\left( x \right) = {x^2}{e^x}.\) Tính \(f''\left( 0 \right).\)
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = \ln \left( {x + 1} \right);\)
b) \(y = \tan 2x.\)
Cho hàm số \(P\left( x \right) = a{x^2} + bx + 3\) (a, b là hằng số). Tìm a, b biết \(P'\left( 1 \right) = 0\) và \(P''\left( 1 \right) = - 2.\)
Cho hàm số \(f\left( x \right) = 2{\sin ^2}\left( {x + \frac{\pi }{4}} \right).\) Chứng minh rằng \(\left| {f''\left( x \right)} \right| \le 4\) với mọi x.
Cho hàm số \(f(x) = \frac{{x + 1}}{{x - 1}}\). Tính \(f''(0)\).
Cho hàm số \(f(x)\) thoả mãn \(f(1) = 2\) và \(f'(x) = {x^2}f(x)\) với mọi \(x\). Tính \(f''(1)\).
Nếu \(f(x) = {\sin ^2}x + x{e^{2x}}\) thì \(f''(0)\) bằng
A. 4.
B. 5.
C. 6.
D. 0.
Tìm đạo hàm cấp hai của hàm số \(y = \sin 3x\).
Xét hàm số \(y = {x^3} - 4{x^2} + 5\).
a) Tìm \(y'\).
b) Tìm đạo hàm của hàm số \(y'\).
Tìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = \frac{1}{{2x + 3}}\)
b) \(y = {\log _3}x\)
c) \(y = {2^x}\)
Tìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = 3{x^2} - 4x + 5\) tại điểm \({x_0} = - 2\)
b) \(y = {\log _3}(2x + 1)\) tại điểm \({x_0} = 3\)
c) \(y = {e^{4x + 3}}\) tại điểm \({x_0} = 1\)
d) \(y = \sin \left( {2x + \frac{\pi }{3}} \right)\) tại điểm \({x_0} = \frac{\pi }{6}\)
e) \(y = \cos \left( {3x - \frac{\pi }{6}} \right)\) tại điểm \({x_0} = 0\).
Một vật rơi tự do theo phương thẳng đứng có phương trình \(s = \frac{1}{2}g{t^2}\), trong đó g là gia tốc rơi tự do, \(g \approx 9,8m/{s^2}\).
a) Tính vận tốc tức thời của vật tại thời điểm \({t_0} = 2(s)\).
b) Tính gia tốc tức thời của vật tại thời điểm \({t_0} = 2(s)\).
Tính đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = 2{x^4} - 3{x^3} + 5{x^2}\)
b) \(y = \frac{2}{{3 - x}}\)
c) \(y = \sin 2x\cos x\)
d) \(y = {e^{ - 2x + 3}}\)
e) \(y = \ln (x + 1)\)
f) \(y = \ln ({e^x} + 1)\)
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = x\sin 2x\);
b) \(y = {\cos ^2}x\);
c) \(y = {x^4} - 3{x^3} + {x^2} - 1\).
Một chất điểm chuyển động thẳng có phương trình \(s = 100 + 2t - {t^2}\) trong đó thời gian được tính bằng giây và s được tính bằng mét.
a) Tại thời điểm nào chất điểm có vận tốc bằng 0?
b) Tìm vận tốc và gia tốc của chất điểm tại thời điểm \(t = 3s\).
Một chuyển động thẳng xác định bởi phương trình \(s\left( t \right) = - 2{t^3} + 75t + 3\), trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm \(t = 3\).
Hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có đạo hàm cấp hai tại \(x = 1\) là
A. \(y''\left( 1 \right) = \frac{1}{4}\)
B. \(y''\left( 1 \right) = - \frac{1}{4}\)
C. \(y''\left( 1 \right) = \frac{1}{2}\)
D. \(y''\left( 1 \right) = - \frac{1}{2}\)
Cho hai hàm số \(f\left( x \right) = 3{x^3} - 3{x^2} + 6x - 1\) và \(g\left( x \right) = {x^3} + {x^2} - 2\). Bất phương trình \(f''\left( x \right) - f'\left( x \right) + g'\left( x \right) - 8 \ge 0\) có tập nghiệm là
A. \(\left( {1;\frac{{10}}{3}} \right)\)
B. \(\left( { - \infty ;1} \right] \cup \left[ {\frac{{10}}{3}; + \infty } \right)\)
C. \(\left[ {1;\frac{{10}}{3}} \right]\)
D. \(\left( { - \infty ;1} \right) \cup \left( {\frac{{10}}{3}; + \infty } \right)\)
Vị trí chuyển động của một vật trên đường thẳng được biểu diễn bởi công thức \(s\left( t \right) = 3{t^3} + 5t + 2\), trong đó t là thời gian tính bằng giây và s tính bằng mét. Tính vận tốc và gia tốc của vật đó khi \(t = 1\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = \frac{{x - 1}}{{x + 2}}\);
b) \(y = \sqrt {3x + 2} \);
c) \(y = x.{e^{2x}}\).
Gia tốc tức thời của chuyển động \(s = f\left( t \right)\) tại thời điểm \({t_0}\) là:
A. \(f\left( {{t_0}} \right).\)
B. \(f''\left( {{t_0}} \right).\)
C. \(f'\left( {{t_0}} \right).\)
D. \( - f'\left( {{t_0}} \right).\)
Cho hàm số \(f\left( x \right) = {e^{ - x}}.\) Khi đó, \(f''\left( x \right)\) bằng:
A. \({e^{ - x}}.\)
B. \( - {e^{ - x}}.\)
C. \( - {e^x}.\)
D. \({e^x}.\)
Cho hàm số \(f\left( x \right) = \ln \left( {3x} \right).\) Khi đó, \(f''\left( x \right)\) bằng:
A. \( - \frac{1}{{9{x^2}}}.\)
B. \( - \frac{1}{{{x^2}}}.\)
C. \(\frac{3}{{{x^2}}}.\)
D. \( - \frac{3}{{{x^2}}}.\)
Cho hàm số \(f\left( x \right) = \frac{1}{x}.\) Khi đó, \(f''\left( 1 \right)\) bằng:
A. \(1.\)
B. \( - 2.\)
C. \(2.\)
D. \( - 1.\)