Cho phân thức \(P = \frac{{4{x^2} + 2x + 3}}{{2x + 1}}\left( {x \ne - \frac{1}{2}} \right)\)
a) Tìm thương và dư của phép chia đa thức \(4{x^2} + 2x + 3\) cho đa thức \(2x + 1\)
b) Sử dụng kết quả của câu a, hãy viết P dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số. Dùng kết quả đó để tìm tất cả các giá trị nguyên của x để phân thức đã cho có giá trị cũng là số nguyên.
a) Sử dụng kiến thức chia đa thức cho đa thức
b) + Sử dụng kiến thức giá trị của phân thức tại một giá trị đã cho của biến để tính giá trị phân thức: Muốn tính giá trị của một phân thức tại một giá trị đã cho của biến ta thay giá trị đã cho của biến vào phân thức đó rồi tính giá trị biểu thức số nhận được.
+ Một phân số là số nguyên khi tử số chia hết cho mẫu số (hay mẫu số là ước của tử số).
a) Chia đa thức \(4{x^2} + 2x + 3\) cho đa thức \(2x + 1\) được thương là 2x và dư là 3.
Do đó, \(4{x^2} + 2x + 3 = 2x\left( {2x + 1} \right) + 3\)
b) \(P = \frac{{4{x^2} + 2x + 3}}{{2x + 1}} = \frac{{2x\left( {2x + 1} \right) + 3}}{{2x + 1}} = 2x + \frac{3}{{2x + 1}}\)
Để x, P thuộc \(\mathbb{Z}\) thì \(\frac{3}{{2x + 1}} \in \mathbb{Z}.\)
Suy ra, \(2x + 1\) là một ước số nguyên của 3. Do đó, \(2x + 1 \in \left\{ {1; - 1;3; - 3} \right\}\)
Ta có bảng
Vậy \(x \in \left\{ {0; - 1; - 2;1} \right\}\) thì thỏa mãn yêu cầu bài toán
Các bài tập cùng chuyên đề
Làm tính chia \(\left( {6{x^4}{y^3} - 8{x^3}{y^4} + 3{x^2}{y^2}} \right):2x{y^2}\)
Tìm đa thức A sao cho \(A.\left( { - 3xy} \right) = 9{x^3}y + 3x{y^3} - 6{x^2}{y^2}\)
Cho đa thức \(A = 9x{y^4} - 12{x^2}{y^3} + 6{x^3}{y^2}\). Với mỗi trường hợp sau đây, xét xem A có chia hết cho đơn thức B hay không? Thực hiện phép chia trong trường hợp A chia hết cho B.
a) \(B = 3{x^2}y\)
b) \(B = - 3x{y^2}\)
Thực hiện phép chia \(\left( {7{y^5}{z^2} - 14{y^4}{z^3} + 2,1{y^3}{z^4}} \right):\left( { - 7{y^3}{z^2}} \right)\)
a) Tìm đơn thức \(B\) nếu \(4{x^3}{y^2}:B = - 2xy\).
b) Với đơn thức B tìm được ở câu a, hãy tìm đơn thức H để \(\left( {4{x^3}{y^2} - 3{x^2}{y^3}} \right):B = - 2xy + H\)
Khi chia đa thức \(8{x^3}{y^2} - 6{x^2}{y^3}\) cho đơn thức \( - 2xy\) ta được kết quả là
A. \( - 4{x^2}y + 3x{y^2}\)
B. \( - 4x{y^2} + 3{x^2}y\)
C. \( - 10{x^2}y + 4x{y^2}\)
D. \( - 10{x^2}y + 4x{y^2}\)
Làm phép chia sau theo hướng dẫn:
\(\left[ {8{x^3}{{\left( {2x - 5} \right)}^2} - 6{x^2}{{\left( {2x - 5} \right)}^3} + 10x{{\left( {2x - 5} \right)}^2}} \right]:2x{\left( {2x - 5} \right)^2}\)
Hướng dẫn: Đặt \(y = 2x - 5\)
Thực hiện các phép chia:
a) \(\left( {5ab - 2{a^2}} \right):a\)
b) \(\left( {6{x^2}{y^2} - x{y^2} + 3{x^2}y} \right): - 3xy\)
Tính chiều cao của hình hộp chữ nhật có thể tích \(V = 6{x^2}y - 8x{y^2}\) và diện tích đáy \(S = 2xy\).
Thực hiện các phép chia:
a) \(\left( {4{x^3}{y^2} - 8{x^2}y + 10xy} \right):\left( {2xy} \right)\) b) \(\left( {7{x^4}{y^2} - 2{x^2}{y^2} - 5{x^3}{y^4}} \right):\left( {3{x^2}y} \right)\)
a) Tính chiều dài của hình chữ nhật có diện tích bằng \(6xy + 10{y^2}\) và chiều rộng bằng \(2y\).
b) Tính diện tích đáy của hình hộp chữ nhật có thể tích bằng \(12{x^3} - 3x{y^2} + 9{x^2}y\) và chiều cao bằng \(3x\).
Thực hiện các phép tính sau:
a) \(18{x^4}{y^3}:12{\left( { - x} \right)^3}y\)
b) \({x^2}{y^2} - 2x{y^3}:\left( {\dfrac{1}{2}x{y^2}} \right)\)
Tìm thương của phép chia đa thức\(12{{\rm{x}}^3}{y^3} - 6{{\rm{x}}^4}{y^3} + 21{{\rm{x}}^3}{y^4}\) cho đơn thức \(3{{\rm{x}}^3}{y^3}\)
a) Giải thích vì sao \(21{x^2}{y^3} - 9{x^3}{y^4} = 3x{y^2}.\left( {7xy - 3{x^2}{y^2}} \right)\).
b) Tính \(21{x^2}{y^3}:3x{y^2}\) và \( - 9{x^3}{y^4}:3x{y^2}\). Dự đoán kết quả của phép chia \(21{x^2}{y^3} - 9{x^3}{y^4}\)cho \(3x{y^2}\).
Cho đa thức \(A = 6{x^4}{y^3} - 4{x^2}{y^2} + 12{x^3}{y^2}\) và đơn thức \(B = 2{x^2}y\). Tìm đa thức Q sao cho \(A = B.Q\).
Không làm tính chia, hãy giải thích vì sao đa thức \(A = 26{x^4}{y^3} - 14{x^2}{y^2} + 7{y^2}\) chia hết cho đơn thức \(B = 4{y^2}\).
Thực hiện các phép tính sau:
a) \(\left( {{x^4} - 2{x^3}y + 3{x^2}{y^2}} \right):\left( { - \frac{2}{3}{x^2}} \right)\)
b) \(\left( {36{x^4}{y^3}{z^2} - 54{x^2}{y^2}{z^2} - 15{x^3}{y^2}{z^3}} \right):6x{y^2}{z^2}\)
Từ tỉnh A, một người đi xe máy với tốc độ \(v\)km/h trong 3 giờ đầu, sau đó xe đi với tốc độ gấp rưỡi tốc độ trước đó trong \(t\) giờ thì đến tỉnh B. Một người khác đi xe đạp từ tỉnh A đến tỉnh B với tốc độ bằng \(\frac{1}{3}\) tốc độ ban đầu của xe máy. Viết biểu thức tính thời gian xe đạp đi hết quãng đường AB.
Thực hiện các phép tính sau:
a) \(125{x^6}{y^3}:\left( { - 25{x^4}{y^2}} \right)\)
b) \({\left( { - xyz} \right)^9}:{\left( { - xyz} \right)^5}\)
c) \(\left( {6{x^3}{y^2} + 4{x^2}{y^2} - 3x{y^4}} \right):\left( { - \frac{3}{4}{y^2}} \right)\)
d) \(\left( {18{x^2}{y^3}{z^4} - 27{x^2}{y^4}{z^2} - 2x{y^5}{z^3}} \right):9x{y^3}{z^2}\)
Thực hiện các phép chia:
a) \(\left( {6{x^2}y - 9x{y^2}} \right):\left( {3xy} \right)\);
b) \(\left( { - x{y^2} + 10y} \right):\left( { - 5y} \right)\);
c) \(\left( {5x{y^2} + 2} \right):\frac{5}{2}\);
d) \(\left( {2{x^4}{y^2} - 3{x^2}{y^3}} \right):\left( { - {x^2}y} \right)\).
Thực hiện phép chia
a) \(\left( {2,5{x^3}{y^2} - {x^2}{y^3} + 1,5x{y^4}} \right):5x{y^2};\)
b) \(\left( {3{x^5}{y^3} + 4{x^4}{y^4} - 5{x^3}{y^5}} \right):2{x^2}{y^2}\).
Rút gọn biểu thức
a) \(\left( {5{x^3}{y^2} - 4{x^2}{y^3}} \right):2{x^2}{y^2} - \left( {3{x^2}y - 6x{y^2}} \right):3xy\);
b) \(5{x^2}y{z^3}:{z^2} - 3{x^2}{y^3}z:xy - 2xyz\left( {x + y} \right)\).
Kết quả của phép chia \(5{x^3}{y^2} - 10{x^2}{y^3} + 15{x^2}{y^2}\) cho \( - 5{x^2}{y^2}\) là:
A. \( - xy + 2y - 3\).
B. \( - x + 2y - 3xy\).
C. \( - x + 2y - 3\).
D. \( - x + 2xy - 3\).
Thực hiện phép chia:
a) \(\left( {4{x^4}{y^2} - 6{x^3}{y^3} - 2{x^2}{y^4}} \right):\left( { - 2{x^2}{y^2}} \right)\);
b) \(\left( {5{x^4}{y^3} + \frac{1}{2}{x^3}{y^4} - \frac{2}{3}{x^2}{y^5} - x{y^6}} \right):\frac{5}{6}x{y^2}\).
Bằng cách đặt \(y = {x^2} - 1\), hãy tìm thương của phép chia
\(\left[ {9{x^3}\left( {{x^2} - 1} \right) - 6{x^2}{{\left( {{x^2} - 1} \right)}^2} + 12x\left( {{x^2} - 1} \right)} \right]:3x\left( {{x^2} - 1} \right)\).
Cho đa thức \(M = - 6{x^3}{y^2}\; + 4{x^2}{y^3}\; + 2{x^4}y\) và \(N = - 2{x^2}y\) . Khi đó
A. \(M:N = - 3xy + 2{y^2}\;-{x^2}\) .
B. \(M:N = 3xy-2{y^2}\;-{x^2}\) .
C. \(M:N = 3xy-2{y^2}\;-x\) .
D. M không chia hết cho N.
Cho đa thức \(A = 9x{y^4}\;-12{x^2}{y^3}\; + 6{x^3}{y^2}\) . Với mỗi trường hợp sau đây, xét xem A có chia hết cho đơn thức B hay không. Thực hiện phép chia trong trường hợp A chia hết cho B.
a) \(B = \;3{x^2}y\) .
b) \(B = - 3x{y^2}\) .
Thực hiện phép chia \(\left( {7{y^5}{z^2}\;-14{y^4}{z^3}\; + 2,1{y^3}{z^4}} \right):\left( { - 7{y^3}{z^2}} \right)\) .
a) Tìm đơn thức B nếu 4x3y2 : B = −2xy.
b) Với đơn thức B tìm được ở câu a, hãy tìm đơn thức H để \(\left( {4{x^3}{y^2}\;-3{x^2}{y^3}} \right):B = - 2xy + H\).
a) Tìm đơn thức C nếu \(5x{y^2}\;.C = 10{x^3}{y^3}\).
b) Với đơn thức C tìm được ở câu a, hãy tìm đơn thức K sao cho \(\left( {K + 5x{y^2}} \right).C = 6{x^4}y + 10{x^3}{y^3}\).