Đề bài

Thực hiện các phép chia:

a) \(\left( {5ab - 2{a^2}} \right):a\)                                      

b) \(\left( {6{x^2}{y^2} - x{y^2} + 3{x^2}y} \right): - 3xy\)

Phương pháp giải

Áp dụng quy tắc chia đa thức cho đơn thức.

Lời giải của GV Loigiaihay.com

a) \(\left( {5ab - 2{a^2}} \right):a\)

\( = \left( {5ab:a} \right) - \left( {2{a^2}:a} \right)\)

\( = 5b - 2a\)

b) \(\left( {6{x^2}{y^2} - x{y^2} + 3{x^2}y} \right): \left( - 3xy \right)\)

\( = \left[ {6{x^2}{y^2}:\left( { - 3xy} \right)} \right] - \left[ {x{y^2}:\left( { - 3xy} \right)} \right] + \left[ {3{x^2}y:\left( { - 3xy} \right)} \right]\)

\( =  - 2xy - \left( { - \frac{1}{3}y} \right) + \left( { - x} \right)\)

\( =  - 2xy + \frac{1}{3}y - x\)

Các bài tập cùng chuyên đề

Bài 1 :

Làm tính chia \(\left( {6{x^4}{y^3} - 8{x^3}{y^4} + 3{x^2}{y^2}} \right):2x{y^2}\)

Xem lời giải >>
Bài 2 :

Tìm đa thức A sao cho \(A.\left( { - 3xy} \right) = 9{x^3}y + 3x{y^3} - 6{x^2}{y^2}\)

Xem lời giải >>
Bài 3 :

Cho đa thức \(A = 9x{y^4} - 12{x^2}{y^3} + 6{x^3}{y^2}\). Với mỗi trường hợp sau đây, xét xem A có chia hết cho đơn thức B hay không? Thực hiện phép chia trong trường hợp A chia hết cho B.

a)      \(B = 3{x^2}y\)

b)      \(B =  - 3x{y^2}\)

Xem lời giải >>
Bài 4 :

Thực hiện phép chia \(\left( {7{y^5}{z^2} - 14{y^4}{z^3} + 2,1{y^3}{z^4}} \right):\left( { - 7{y^3}{z^2}} \right)\)

Xem lời giải >>
Bài 5 :

a)      Tìm đơn thức \(B\) nếu \(4{x^3}{y^2}:B =  - 2xy\).

b)      Với đơn thức B tìm được ở câu a, hãy tìm đơn thức H để \(\left( {4{x^3}{y^2} - 3{x^2}{y^3}} \right):B =  - 2xy + H\)

Xem lời giải >>
Bài 6 :

Khi chia đa thức \(8{x^3}{y^2} - 6{x^2}{y^3}\) cho đơn thức \( - 2xy\) ta được kết quả là
A. \( - 4{x^2}y + 3x{y^2}\)
B. \( - 4x{y^2} + 3{x^2}y\)
C. \( - 10{x^2}y + 4x{y^2}\)
D. \( - 10{x^2}y + 4x{y^2}\)

Xem lời giải >>
Bài 7 :

Làm phép chia sau theo hướng dẫn:

\(\left[ {8{x^3}{{\left( {2x - 5} \right)}^2} - 6{x^2}{{\left( {2x - 5} \right)}^3} + 10x{{\left( {2x - 5} \right)}^2}} \right]:2x{\left( {2x - 5} \right)^2}\)

Hướng dẫn: Đặt \(y = 2x - 5\)

Xem lời giải >>
Bài 8 :

Tính chiều cao của hình hộp chữ nhật có thể tích \(V = 6{x^2}y - 8x{y^2}\) và diện tích đáy \(S = 2xy\).

Xem lời giải >>
Bài 9 :

Thực hiện các phép chia:

a) \(\left( {4{x^3}{y^2} - 8{x^2}y + 10xy} \right):\left( {2xy} \right)\)                  b) \(\left( {7{x^4}{y^2} - 2{x^2}{y^2} - 5{x^3}{y^4}} \right):\left( {3{x^2}y} \right)\)

Xem lời giải >>
Bài 10 :

a) Tính chiều dài của hình chữ nhật có diện tích bằng \(6xy + 10{y^2}\) và chiều rộng bằng \(2y\).

b) Tính diện tích đáy của hình hộp chữ nhật có thể tích bằng \(12{x^3} - 3x{y^2} + 9{x^2}y\) và chiều cao bằng \(3x\).

Xem lời giải >>
Bài 11 :

Thực hiện các phép tính sau:

a) \(18{x^4}{y^3}:12{\left( { - x} \right)^3}y\)

b) \({x^2}{y^2} - 2x{y^3}:\left( {\dfrac{1}{2}x{y^2}} \right)\)

Xem lời giải >>
Bài 12 :

Tìm thương của phép chia đa thức\(12{{\rm{x}}^3}{y^3} - 6{{\rm{x}}^4}{y^3} + 21{{\rm{x}}^3}{y^4}\) cho đơn thức \(3{{\rm{x}}^3}{y^3}\)

Xem lời giải >>
Bài 13 :

a)    Giải thích vì sao \(21{x^2}{y^3} - 9{x^3}{y^4} = 3x{y^2}.\left( {7xy - 3{x^2}{y^2}} \right)\).

b)    Tính \(21{x^2}{y^3}:3x{y^2}\) và \( - 9{x^3}{y^4}:3x{y^2}\). Dự đoán kết quả của phép chia \(21{x^2}{y^3} - 9{x^3}{y^4}\)cho \(3x{y^2}\).

Xem lời giải >>
Bài 14 :

Cho đa thức \(A = 6{x^4}{y^3} - 4{x^2}{y^2} + 12{x^3}{y^2}\) và đơn thức \(B = 2{x^2}y\). Tìm đa thức Q sao cho \(A = B.Q\).

Xem lời giải >>
Bài 15 :

Không làm tính chia, hãy giải thích vì sao đa thức \(A = 26{x^4}{y^3} - 14{x^2}{y^2} + 7{y^2}\) chia hết cho đơn thức \(B = 4{y^2}\).

Xem lời giải >>
Bài 16 :

Thực hiện các phép tính sau:

a)     \(\left( {{x^4} - 2{x^3}y + 3{x^2}{y^2}} \right):\left( { - \frac{2}{3}{x^2}} \right)\)

b)    \(\left( {36{x^4}{y^3}{z^2} - 54{x^2}{y^2}{z^2} - 15{x^3}{y^2}{z^3}} \right):6x{y^2}{z^2}\)

Xem lời giải >>
Bài 17 :

Từ tỉnh A, một người đi xe máy với tốc độ \(v\)km/h trong 3 giờ đầu, sau đó xe đi với tốc độ gấp rưỡi tốc độ trước đó trong \(t\) giờ thì đến tỉnh B. Một người khác đi xe đạp từ tỉnh A đến tỉnh B với tốc độ bằng \(\frac{1}{3}\) tốc độ ban đầu của xe máy. Viết biểu thức tính thời gian xe đạp đi hết quãng đường AB.

Xem lời giải >>
Bài 18 :

Thực hiện các phép tính sau:

a)     \(125{x^6}{y^3}:\left( { - 25{x^4}{y^2}} \right)\)

b)    \({\left( { - xyz} \right)^9}:{\left( { - xyz} \right)^5}\)

c)     \(\left( {6{x^3}{y^2} + 4{x^2}{y^2} - 3x{y^4}} \right):\left( { - \frac{3}{4}{y^2}} \right)\)

d)    \(\left( {18{x^2}{y^3}{z^4} - 27{x^2}{y^4}{z^2} - 2x{y^5}{z^3}} \right):9x{y^3}{z^2}\)

Xem lời giải >>
Bài 19 :

Thực hiện các phép chia:

a) \(\left( {6{x^2}y - 9x{y^2}} \right):\left( {3xy} \right)\);

b) \(\left( { - x{y^2} + 10y} \right):\left( { - 5y} \right)\);

c) \(\left( {5x{y^2} + 2} \right):\frac{5}{2}\);

d) \(\left( {2{x^4}{y^2} - 3{x^2}{y^3}} \right):\left( { - {x^2}y} \right)\).

Xem lời giải >>
Bài 20 :

Thực hiện phép chia

a) \(\left( {2,5{x^3}{y^2} - {x^2}{y^3} + 1,5x{y^4}} \right):5x{y^2};\)

b) \(\left( {3{x^5}{y^3} + 4{x^4}{y^4} - 5{x^3}{y^5}} \right):2{x^2}{y^2}\).

Xem lời giải >>
Bài 21 :

Rút gọn biểu thức

a) \(\left( {5{x^3}{y^2} - 4{x^2}{y^3}} \right):2{x^2}{y^2} - \left( {3{x^2}y - 6x{y^2}} \right):3xy\);

b) \(5{x^2}y{z^3}:{z^2} - 3{x^2}{y^3}z:xy - 2xyz\left( {x + y} \right)\).

Xem lời giải >>
Bài 22 :

Kết quả của phép chia \(5{x^3}{y^2} - 10{x^2}{y^3} + 15{x^2}{y^2}\) cho \( - 5{x^2}{y^2}\) là:

A. \( - xy + 2y - 3\).        

B. \( - x + 2y - 3xy\).

C. \( - x + 2y - 3\).

D. \( - x + 2xy - 3\).

Xem lời giải >>
Bài 23 :

Thực hiện phép chia:

a) \(\left( {4{x^4}{y^2} - 6{x^3}{y^3} - 2{x^2}{y^4}} \right):\left( { - 2{x^2}{y^2}} \right)\);       

b) \(\left( {5{x^4}{y^3} + \frac{1}{2}{x^3}{y^4} - \frac{2}{3}{x^2}{y^5} - x{y^6}} \right):\frac{5}{6}x{y^2}\).

Xem lời giải >>
Bài 24 :

Bằng cách đặt \(y = {x^2} - 1\), hãy tìm thương của phép chia

\(\left[ {9{x^3}\left( {{x^2} - 1} \right) - 6{x^2}{{\left( {{x^2} - 1} \right)}^2} + 12x\left( {{x^2} - 1} \right)} \right]:3x\left( {{x^2} - 1} \right)\).

Xem lời giải >>
Bài 25 :

Cho đa thức \(M = - 6{x^3}{y^2}\; + 4{x^2}{y^3}\; + 2{x^4}y\) và \(N = - 2{x^2}y\) . Khi đó

A. \(M:N = - 3xy + 2{y^2}\;-{x^2}\) .

B. \(M:N = 3xy-2{y^2}\;-{x^2}\) .

C. \(M:N = 3xy-2{y^2}\;-x\) .

D. M không chia hết cho N.

Xem lời giải >>
Bài 26 :

Cho đa thức \(A = 9x{y^4}\;-12{x^2}{y^3}\; + 6{x^3}{y^2}\) . Với mỗi trường hợp sau đây, xét xem A có chia hết cho đơn thức B hay không. Thực hiện phép chia trong trường hợp A chia hết cho B.

a) \(B = \;3{x^2}y\) .

b) \(B = - 3x{y^2}\) .

Xem lời giải >>
Bài 27 :

Thực hiện phép chia \(\left( {7{y^5}{z^2}\;-14{y^4}{z^3}\; + 2,1{y^3}{z^4}} \right):\left( { - 7{y^3}{z^2}} \right)\) .

Xem lời giải >>
Bài 28 :

a) Tìm đơn thức B nếu 4x3y2 : B = −2xy.

b) Với đơn thức B tìm được ở câu a, hãy tìm đơn thức H để \(\left( {4{x^3}{y^2}\;-3{x^2}{y^3}} \right):B =  - 2xy + H\).

Xem lời giải >>
Bài 29 :

a) Tìm đơn thức C nếu \(5x{y^2}\;.C = 10{x^3}{y^3}\).

b) Với đơn thức C tìm được ở câu a, hãy tìm đơn thức K sao cho \(\left( {K + 5x{y^2}} \right).C = 6{x^4}y + 10{x^3}{y^3}\).

Xem lời giải >>
Bài 30 :

Khi chia đa thức \(8{x^3}{y^2}\;-6{x^2}{y^3}\) cho đơn thức \( - 2xy\), ta được kết quả là

A. \( - 4{x^2}y + 3x{y^2}\).

B. \( - 4x{y^2}\; + 3{x^2}y\).

C. \( - 10{x^2}y + 4x{y^2}\).

D. \( - 10{x^2}y + 4x{y^2}\).

Xem lời giải >>