Đề bài

Xét vị trí tương đối của cặp đường thẳng \({d_1}\) và \({d_2}\) sau đây:

a) \({d_1}:x - y + 2 = 0\) và \({d_2}:x + y + 4 = 0\)

b) \({d_1}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + 5t\end{array} \right.\) và \({d_2}:5x - 2y + 9 = 0\)

c) \({d_1}:\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 3t\end{array} \right.\) và \({d_2}:3x + y - 11 = 0\)

Phương pháp giải

Bước 1: Xác định cặp vectơ pháp tuyến (hoặc chỉ phương) của hai đường thẳng: \((a_1; b_1) \, \rm{và}\, (a_2; b_2) \)

Bước 2: 

+) Nếu 2 vecto cùng phương: Lấy điểm A thuộc d1. Kiểm tra A có thuộc d2 hay không.

=> KL: 2 đường thẳng song song nếu A không thuộc d2.

 2 đường thẳng trùng nhau nếu  A thuộc d2.

+) Nếu 2 vecto không cùng phương: Tính tích vô hướng

Nếu bằng 0 thì hai đường thẳng vuông góc, nếu khác 0 thì 2 đường thẳng chỉ cắt nhau.

=> Giải hệ phương trình từ hai đường thẳng để tìm giao điểm

Lời giải của GV Loigiaihay.com

a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 1} \right),\overrightarrow {{n_2}}  = \left( {1;1} \right)\)

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + ( - 1).1 = 0\) nên \(\overrightarrow {{n_1}}  \bot \overrightarrow {{n_2}} \)

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - 3; - 1} \right)\)

 b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {5; - 2} \right),\overrightarrow {{n_2}}  = \left( {5; - 2} \right)\)

\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;3)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(5.1 - 2.3 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song

c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3;1} \right),\overrightarrow {{n_2}}  = \left( {3;1} \right)\)

Suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(2;5)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(3.2 + 5 - 11 = 0\), suy ra A thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) trùng nhau

Các bài tập cùng chuyên đề

Bài 1 :

Xét vị trí tương đối giữa các cặp đường thẳng sau:

a) \({\rm{ }}{\Delta _1}:{\rm{ }}x + 4y - {\rm{3 }} = {\rm{ }}0,{\rm{ }}{\Delta _2}:{\rm{ }}x - 4y - 3{\rm{ }} = {\rm{ }}0\)

a) \({\rm{ }}{\Delta _1}:{\rm{ }}x + 2y - \sqrt 5 {\rm{ }} = {\rm{ }}0,{\rm{ }}{\Delta _2}:{\rm{ 2}}x + 4y - 3\sqrt 5 {\rm{ }} = {\rm{ }}0\)

Xem lời giải >>
Bài 2 :

Trong mặt phẳng tọa độ, cho hai đường thẳng

\(\begin{array}{l}{\Delta _1}:x - 2y + 3 = 0\\{\Delta _2}:3x - y - 1 = 0\end{array}\) .

a) Điểm \(M\left( {1;2} \right)\) có thuộc cả hai đường thẳng nói trên hay không?

b) Giải hệ \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).

c) Chỉ ra mối quan hệ giữa tọa độ giao điểm của \({\Delta _1},{\Delta _2}\) với nghiệm của hệ phương trình trên.

Xem lời giải >>
Bài 3 :

Cho đường thẳng \(\Delta \): y= ax + b, với\(a \ne 0\) .

a) Chứng minh rằng \(\Delta \) cắt trục hoành.

b) Lập phương trình đường thẳng \({\Delta _o}\) đi qua O(0, 0) và song song (hoặc trùng) với\(\Delta \)

c) Hãy chỉ ra mối quan hệ giữa \({\alpha _\Delta }\) và \({\alpha _{{\Delta _o}}}\).

d) Gọi M là giao điểm của \({\Delta _o}\) với nửa đường tròn đơn vị và \({x_o}\) là hoành độ của M. Tính tung độ của M theo \({x_o}\) và a. Từ đó, chứng minh rằng \(\tan {\alpha _\Delta } = a\).

Xem lời giải >>
Bài 4 :

Xét vị trí tương đối giữa các cặp đường thẳng sau:

a) \({\Delta _1}:3\sqrt 2 x + \sqrt 2 y - \sqrt 3  = 0\) và \({\Delta _2}:6x + 2y - \sqrt 6  = 0\)

b) \({d_1}:x - \sqrt 3 y + 2 = 0\) và \({d_2}:\sqrt 3 x - 3y + 2 = 0\)

c) \({m_1}:x - 2y + 1 = 0\) và \({m_2}:3x + y - 2 = 0\)

Xem lời giải >>
Bài 5 :

Xét vị trí tương đối của các cặp đường thẳng \({d_1}\)và \({d_2}\) trong các trường hợp sau:

a) \({d_1}:x - 5y + 9 = 0\) và \({d_2}:10x + 2y + 7 = 10\)

b)  \({d_1}:3x - 4y + 9 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = 1 + 4t\\y = 1 + 3t\end{array} \right.\)

c) \({d_1}:\left\{ \begin{array}{l}x = 5 + 4t\\y = 4 + 3t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 1 + 8t\\y = 1 + 6t\end{array} \right.\)

Xem lời giải >>
Bài 6 :

Cho hai đường thẳng \({\Delta _1}\)và \({\Delta _2}\) một vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \).

Nêu nhận xét về vị trí tương đối giữa \({\Delta _1}\)và \({\Delta _2}\) trong các trường hợp sau:

a) \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) cùng phương (hình 5a,b).

b) \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) không cùng phương (hình 5c,d).

c) \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) vuông góc (hình 5d).

Xem lời giải >>
Bài 7 :

Cho đường thẳng \(\Delta \) có phương trình tổng quát ax + bx + c = 0 (a hoặc b khác 0). Nêu nhận xét về vị trí tương đối của đường thẳng \(\Delta \) với các trục toạ độ trong môi trường hợp sau:

a) b = 0 và \(a \ne 0\)

b) \(b \ne 0\) và a = 0

c) \(b \ne 0\) và \(a \ne 0\)

Xem lời giải >>
Bài 8 :

Xét vị trí tương đối của đường thẳng d: x + 2y – 2 = 0 với mỗi đường thẳng sau:

\({\Delta _1}{\rm{: }}3x{\rm{ }}--{\rm{ }}2y{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0\); \({\Delta _2}:{\rm{ }}x{\rm{ }} + {\rm{ }}2y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\); \({\Delta _3}:{\rm{ }}2x{\rm{ }} + {\rm{ }}4y{\rm{ }}--{\rm{ }}4{\rm{ }} = {\rm{ }}0.\)

Xem lời giải >>
Bài 9 :

 Xét vị trí tương đối của hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + {t_1}\\y =  - 2 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = 2{t_2}\\y =  - 3 + 2{t_2}\end{array} \right.\)

Xem lời giải >>
Bài 10 :

Trong mặt phẳng toạ độ, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt có vectơ chỉ phương là \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \). Nêu điều kiện về hai vectơ \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) trong môi trường hợp sau:

a) \({\Delta _1}\) cắt \({\Delta _2}\)

b) \({\Delta _1}\) song song với \({\Delta _2}\)

c), \({\Delta _1}\) trùng với \({\Delta _2}\)

Xem lời giải >>
Bài 11 :

Nêu vị trí tương đối của hai đường thẳng trong mặt phẳng.

Xem lời giải >>
Bài 12 :

Trong thực tiễn, có những tình huống đòi hỏi chúng ta phải xác định vị trí tương đối của hai đường thẳng, giao điểm của hai đường thẳng,... Chẳng hạn: Ở môn thể thao nội dung 10 m súng trường hơi di động, mục tiêu di động trên một đường thẳng b song song với mặt đất và cách mặt đất 1,4 m; viên đạn di động trên một đường thẳng a (Hình 39). Để bắn trúng mục tiêu, vận động viên phải ước lượng được giao điểm  của  và b sao cho thời gian chuyển động đến điểm  của viên đạn và của mục tiêu là bằng nhau.

Làm thế nào để xác định giao điểm M của hai đường thẳng a và b?

Xem lời giải >>
Bài 13 :

Xét vị trí tương đối của mỗi cặp đường thẳng sau

a) \({d_1}:3x + 2y--5 = 0\) và \({d_2}:x - 4y + 1 = 0\);

b) \({d_3}:x - 2y + 3 = 0\) và \({d_4}: - {\rm{ }}2x + 4y + 10 = 0\);

c) \({d_5}:4x + 2y - 3 = 0\) và \({d_6}:\left\{ \begin{array}{l}x =  - \frac{1}{2} + t\\y = \frac{5}{2} - 2t\end{array} \right.\)

Xem lời giải >>
Bài 14 :

Với giá trị nào của tham số m thì hai đường thẳng sau đây vuông góc?

\({\Delta _1}:mx - y + 1 = 0\) và \({\Delta _2}:2x - y + 3 = 0\).

Xem lời giải >>
Bài 15 :

Xét vị trí tương đối của các cặp đường thẳng sau:

a) \(m:x + y - 2 = 0\) và \(k:2x + 2y - 4 = 0\).

b) \(a:\left\{ \begin{array}{l}x = 1 + 2t\\y = 4\end{array} \right.\) và \(b:\left\{ \begin{array}{l}x = 3t'\\y = 1 + t'\end{array} \right.\).

c) \({d_1}:x - 2y - 1 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = 1 - 2t\\y = 2 - t\end{array} \right.\).

Xem lời giải >>
Bài 16 :

Cho đường thẳng \(d:4x + 3y - 2 = 0\) và đường thẳng \(k:\left\{ \begin{array}{l}x =  - 1 + 3t\\y = 2 - 4t\end{array} \right.\). Vị trí tương đối của hai đường thẳng d và k là:

A. Trùng nhau     

B. Song song       

C. Cắt nhau nhưng không vuông góc 

D. Vuông góc

Xem lời giải >>
Bài 17 :

Xét vị trí tương đối của các cặp đường thẳng \({d_1}\) và \({d_2}\) sau đây:

a) \({d_1}:2x + y + 9 = 0\) và \({d_2}:2x + 3y - 9 = 0\).

b) \({d_1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\end{array} \right.\) và \({d_2}:2x + y + 10 = 0\).

c) \({d_1}:\left\{ \begin{array}{l}x = 1 - t\\y = 8 - 5t\end{array} \right.\) và \({d_2}:5x - y + 3 = 0\).

Xem lời giải >>
Bài 18 :

Xét vị trí tương đối của mỗi cặp đường thẳng sau:

a) \({d_1}:2x - 3y + 5 = 0\) và \({d_2}:2x + y - 1 = 0\).

b) \({d_3}:\left\{ \begin{array}{l}x =  - 1 - 3t\\y = 3 + t\end{array} \right.\) và \({d_4}:x + 3y - 5 = 0\).

c) \({d_5}:\left\{ \begin{array}{l}x = 2 - 2t\\y =  - 1 + t\end{array} \right.\) và \({d_6}:\left\{ \begin{array}{l}x =  - 2 + 2t'\\y = 1 - {t^'}\end{array} \right.\).

Xem lời giải >>
Bài 19 :

Cho hai đường thẳng ∆1: mx – 2y – 1 = 0 và ∆2: x - 2y + 3 = 0. Với giá trị nào của tham số m thì:

a) ∆1 // ∆2?

b) ∆1\( \bot {\Delta _2}\)?

Xem lời giải >>