Cho vectơ \(\overrightarrow n \ne \overrightarrow 0 \) và điểm A. Tìm tập hợp những điểm M sao cho \(\overrightarrow {AM} \) vuông góc với \(\overrightarrow n \).
Tập hợp tất cả những điểm M để \(\overrightarrow {AM} \) vuông góc với \(\overrightarrow n \) là đường thẳng qua A và vuông góc với giá của vectơ \(\overrightarrow n \).
Các bài tập cùng chuyên đề
Hãy chỉ ra một vectơ pháp tuyển của đường thẳng \(\Delta :y = 3x + 4\).
Trong mặt phẳng toạ độ Oxy, cho đường thẳng \(\Delta \). Vẽ vectơ \(\overrightarrow n \) (\(\overrightarrow n \ne \overrightarrow 0 \)) có giá vuông góc với đường thẳng \(\Delta \).
Vectơ nào sau đây là một vectơ pháp tuyến của đường thẳng \(\Delta :2x - 3y + 4 = 0\) ?
A. \(\overrightarrow {{n_1}} = \left( {3;2} \right)\)
B. \(\overrightarrow {{n_2}} = \left( {2;3} \right)\)
C. \(\overrightarrow {{n_3}} = \left( {3; - 2} \right)\)
D. \(\overrightarrow {{n_4}} = \left( {2; - 3} \right)\)
Trong mặt phẳng \(Oxy\), cho đường thẳng \(\Delta :2x - y + 5 = 0\). Tìm tất cả vector pháp tuyến có độ dài \(2\sqrt 5 \) của đường thẳng \(\Delta \).