Đề bài

Một căn phòng dạng hình hộp chữ nhật với chiều dài 8m, rộng 6m và cao 4m có hai chiếc quạt treo tường. Chiếc quạt A treo chính giữa bức tường 8m và cách trần 1m, chiếc quạt B treo chính giữa bức tường 6m và cách trần 1,5m. Hỏi khoảng cách giữa hai chiếc quạt AB cách nhau bao nhiêu m (làm tròn đến hàng phần nghìn)?

Đáp án:

Đáp án

Đáp án:

Phương pháp giải

Chọn hệ trục tọa độ, tìm tọa độ hai chiếc quạt dựa vào hệ trục đó rồi tính khoảng cách.

Công thức tính khoảng cách: \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).

Lời giải của GV Loigiaihay.com

Chọn hệ trục tọa độ Oxyz như hình vẽ, khi đó ta có A(4;0;3) và điểm \(B\left( {0;3;\frac{5}{2}} \right)\).

Khoảng cách giữa hai chiếc quạt là:

\(AB = \sqrt {{{(0 - 4)}^2} + {{(3 - 0)}^2} + {{\left( {\frac{5}{2} - 3} \right)}^2}}  = \frac{{\sqrt {101} }}{2} \approx 5,025\) (m).

Các bài tập cùng chuyên đề

Bài 1 :

Trong Ví dụ 3, tính \({\left( {\overrightarrow a  + \overrightarrow b } \right)^2}\).

 
Xem lời giải >>
Bài 2 :

Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right),\overrightarrow b = \left( {1;1; - 1} \right)\).
a) Xác định tọa độ của vectơ \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \).
b) Tính độ dài vectơ \(\overrightarrow u \).
c) Tính \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right)\).

Xem lời giải >>
Bài 3 :

Trong không gian Oxyz, cho các điểm \(A\left( {2; - 1;3} \right),B\left( {1;1; - 1} \right)\) và \(C\left( { - 1;0;2} \right)\).
a) Tìm tọa độ trọng tâm G của tam giác ABC.
b) Tìm tọa độ điểm M thuộc trục Oz sao cho đường thẳng BM vuông góc với đường thẳng AC.

Xem lời giải >>
Bài 4 :

Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a  = \left( {3;1;2} \right)\), \(\overrightarrow b  = \left( { - 3;0;4} \right)\) và \(\overrightarrow c  = \left( {6; - 1;0} \right)\)

a) Tìm tọa độ của các vectơ \(\overrightarrow a  + \overrightarrow b  + \overrightarrow c \) và \(2\overrightarrow a  - 3\overrightarrow b  - 5\overrightarrow c \).

b) Tính các tích vô hướng \(\overrightarrow a .\left( { - \overrightarrow b } \right)\) và \(\left( {2\overrightarrow a } \right).\overrightarrow c \).

 
Xem lời giải >>
Bài 5 :

Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a  = \left( {3;1;2} \right)\), \(\overrightarrow b  = \left( { - 3;0;4} \right)\) và \(\overrightarrow c  = \left( {6; - 1;0} \right)\)

a) Tìm tọa độ của các vectơ \(\overrightarrow a  + \overrightarrow b  + \overrightarrow c \) và \(2\overrightarrow a  - 3\overrightarrow b  - 5\overrightarrow c \).

b) Tính các tích vô hướng \(\overrightarrow a .\left( { - \overrightarrow b } \right)\) và \(\left( {2\overrightarrow a } \right).\overrightarrow c \).

 
Xem lời giải >>
Bài 6 :

Trong không gian Oxyz, cho ba điểm \(M\left( { - 4;3;3} \right),N\left( {4; - 4;2} \right)\) và \(P\left( {3;6; - 1} \right)\).

a) Tìm tọa độ của các vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \), từ đó chứng minh rằng ba điểm M, N, P không thẳng hàng.

b) Tìm tọa độ của vectơ \(\overrightarrow {NM}  + \overrightarrow {NP} \), từ đó suy ra tọa độ của điểm Q sao cho tứ giác MNPQ là hình bình hành.

c) Tính chu vi của hình bình hành MNPQ.

 
Xem lời giải >>
Bài 7 :

Trong không gian Oxyz, cho tam giác ABC có \(A\left( {1;0;1} \right),B\left( {0; - 3;1} \right)\) và \(C\left( {4; - 1;4} \right)\).

a) Tìm tọa độ trọng tâm của tam giác ABC.

b) Chứng minh rằng \(\widehat {BAC} = {90^0}\).

c) Tính \(\widehat {ABC}\).

 
Xem lời giải >>
Bài 8 :

Trong không gian với hệ tọa độ Oxyz, cho A(-2;3;0), B(4;0;5), C(0;2;-3).

a) Chứng minh rằng ba điểm A, B, C không thẳng hàng

b) Tính chu vi tam giác ABC

c) Tìm tọa độ trọng tâm G của tam giác ABC

d) Tính \(\cos \widehat {BAC}\)

Xem lời giải >>
Bài 9 :

Trong không gian với hệ tọa độ Oxyz, cho A(2;0;-3), B(0;-4;5) và C(-1;2;0).

a) Chứng minh rằng ba điểm A, B, C không thằng hàng

b) Tìm tọa độ của điểm D sao cho tứ giác ABCD là hình bình hành

c) Tìm tọa độ trọng tâm G của tam giác ABC

d) Tính chu vi của tam giác ABC

e) Tính \(\cos \widehat {BAC} \)

Xem lời giải >>
Bài 10 :

Cho tứ diện ABCD có BA, BC, BD đôi một vuông góc và BA = BC = BD = 1. Gọi I là trung điểm của AC.

Xem lời giải >>
Bài 11 :

Cho hình lập phương ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AD và BB’. Cos của góc hợp bởi MN và AC’ bằng \(\frac{{\sqrt a }}{b}\) với \(a,b \in \mathbb{N}\). Tính \(a + b\).

Xem lời giải >>
Bài 12 :

Trong không gian Oxyz, cho hình bình hành ABCD. Biết A(1;0;1), B(2;1;2), và D(1;-1;1). Tọa độ điểm C là (a;b;c). Tính tổng a + b + c.

Xem lời giải >>
Bài 13 :

Trong không gian Oxyz, cho vecto \(\overrightarrow a  = (2; - 2; - 4)\), \(\overrightarrow b  = (1; - 1;1)\).

Xem lời giải >>
Bài 14 :

Trong không gian Oxyz, cho vecto \(\overrightarrow a  = (2;1; - 2)\), \(\overrightarrow b  = (0; - 1;1)\).

Xem lời giải >>
Bài 15 :

Trong không gian Oxyz, cho vecto \(\overrightarrow c  = (3;4;0)\), \(\overrightarrow b  = (1; - 2;2)\).

Xem lời giải >>
Bài 16 :

Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A’B’C’D’. Biết A(2;4;0), B(4;0;0), C(-1;4;-7) và D’(6;8;10). Tổng hoành độ, tung độ, cao độ của điểm B’ bằng bao nhiêu?

Xem lời giải >>
Bài 17 :

Trong không gian Oxyz, cho vecto \(\overrightarrow a  = (2;3;1)\), \(\overrightarrow b  = ( - 1;5;2)\), \(\overrightarrow c  = (4; - 1;3)\) và \(\overrightarrow x  = ( - 3;22;5)\).

Xem lời giải >>
Bài 18 :

Trong không gian Oxyz, cho hình hộp ABCD.A’B’C’D’ có A(1;0;1), B(2;1;2), D(1;-1;1), C’(4;5;-5). Tính tổng của hoành độ, tung độ, cao độ đỉnh A’.

Xem lời giải >>
Bài 19 :

Trong không gian Oxyz, biết \(\overrightarrow c  = (x;y;z)\) vuông góc vối cả hai vecto \(\overrightarrow a  = (1;3;4)\), \(\overrightarrow b  = ( - 1;2;3)\).

Xem lời giải >>
Bài 20 :

Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {5;7; - 4} \right),B\left( {6;8; - 3} \right),C\left( {6;7; - 3} \right),D'\left( {3;0;3} \right)\). Tìm toạ độ các đỉnh \(D\) và \(A'\).

Xem lời giải >>
Bài 21 :

Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {2;0;2} \right),B\left( {4;2;4} \right),D\left( {2; - 2;2} \right),C'\left( {8;10; - 10} \right)\). Tìm toạ độ điểm \(A'\).

Xem lời giải >>
Bài 22 :

Cho hình bình hành \(OABD\) có \(\overrightarrow {OA}  = \left( { - 1;1;0} \right)\) và \(\overrightarrow {OB}  = \left( {1;1;0} \right)\) với \(O\) là gốc toạ độ. Tìm toạ độ của điểm \(D\).

Xem lời giải >>
Bài 23 :

Cho tứ diện \(OABC\) có \(G\left( {3; - 3;6} \right)\) là trọng tâm. Tìm toạ độ điểm \(A\) thoả mãn \(\overrightarrow {AB}  = \left( {1;2;3} \right)\) và \(\overrightarrow {AC}  = \left( { - 1;4; - 2} \right)\).

Xem lời giải >>
Bài 24 :

Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {2;4;0} \right),B\left( {4;0;0} \right),C\left( { - 1;4; - 7} \right)\) và \(D'\left( {6;8;10} \right)\). Tìm toạ độ của điểm \(B'\).

Xem lời giải >>
Bài 25 :

Cho điểm \(A\left( {2;2;1} \right)\). Tính độ dài đoạn thẳng \(OA\).

Xem lời giải >>
Bài 26 :

Cho điểm \(A\left( {1;2;3} \right)\). Tính khoảng cách từ \(A\) đến trục \(Oy\).

Xem lời giải >>
Bài 27 :

Cho điểm \(M\left( {3; - 1;2} \right)\). Tìm:

a) Toạ độ điểm \(M'\) là điểm đối xứng của điểm \(M\) qua gốc toạ độ \(O\).

b) Toạ độ điểm \(O'\) là điểm đối xứng của điểm \(O\) qua điểm \(M\).

c) Khoảng cách từ \(M\) đến gốc toạ độ.

d) Khoảng cách từ \(M\) đến mặt phẳng \(\left( {Oxz} \right)\).

Xem lời giải >>
Bài 28 :

Cho điểm \(M\left( {a;b;c} \right)\). Gọi \(A,B,C\) theo thứ tự là điểm đối xứng của điểm \(M\) qua các mặt phẳng \(\left( {Oxy} \right),\left( {Oyz} \right),\left( {Oxz} \right)\). Tìm toạ độ trọng tâm của tam giác \(ABC\).

Xem lời giải >>
Bài 29 :

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian \(Oxyz\) được minh hoạ như Hình 3. Cho biết \(OABC.DEFH\) là hình hộp chữ nhật và \(EMF.DNH\) là hình lăng trụ đứng.

a) Tìm toạ độ của các điểm \(B,F,H\).

b) Tìm toạ độ của các vectơ \(\overrightarrow {ME} ,\overrightarrow {MF} \).

c) Tính số đo \(\widehat {EMF}\).

Xem lời giải >>
Bài 30 :

Cho hai điểm \(A\left( {2;0;1} \right)\) và \(B\left( {0;5; - 1} \right)\). Tích vô hướng của hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) bằng

A. ‒2.

B. ‒1.

C. 1.

D. 2.

Xem lời giải >>