Đề bài

Hằng ngày bạn Hùng đều đón bạn Minh đi học tại một vị trí trên lề đường thẳng đến trường. Minh đứng tại vị trí A cách lề đường một khoảng 50 m để chờ Hùng. Khi nhìn thấy Hùng đạp xe đến địa điểm B. cách mình một đoạn 200m thì Minh bắt đầu đi bộ ra lề đường để bắt kịp xe. Vận tốc đi bộ của Minh là 5 km/h, vận tốc xe đạp của Hùng là 15 km/h. Hãy xác định vị trí C trên lề đường (H.6.22) để hai bằng gặp nhau mà không bạn nào phải chờ người kia (làm tròn kết quả đến hàng phần mười).

Phương pháp giải

Bước 1: Đặt CH=x (km) (x>0)

Bước 2: Tính quãng đường Minh di chuyển, Hùng di chuyển

Bước 3: Để hai người không phải chờ nhau thì thời gian đi của 2 bạn phải bằng nhau nên ta lập được phương trình:

\(\frac{{\sqrt {0,0025 + {x^2}} }}{5} = \frac{{\sqrt {15}  - 20x}}{{300}}\)

Giải phương trình tìm được x là tìm được vị trí điểm C

Lời giải của GV Loigiaihay.com

Đổi: 200m=0,2 km

50m=0,05km

Đặt CH=x (km) (x>0)

Xét tam giác CHA vuông ở H, ta có:

\(C{A^2} = C{H^2} + A{H^2} = {x^2} + 0,0025\)

=> Quãng đường Minh di chuyển là \(CA = \sqrt {{x^2} + 0,0025} \)

Vận tốc đi bộ của Minh là 5km/h nên thời gian di chuyển của Minh là:

\(\frac{{\sqrt {{x^2} + 0,0025} }}{5}\) (giờ)

Xét tam giác AHB xuông tại H, ta có:

\(\begin{array}{l}H{B^2} = A{B^2} - A{H^2} = {(0,2)^2} - {(0,05)^2} = 0,0375\\ \Rightarrow HB = \frac{{\sqrt {15} }}{{20}}\end{array}\)

=> Quãng đường mà Hùng di chuyển là: \(BC = HB - HC = \frac{{\sqrt {15} }}{{20}} - x\)

Vận tốc đạp xe của Hùng là 15km/h nên thời gian di chuyển của Hùng là:

\(\frac{{\frac{{\sqrt {15} }}{{20}} - x}}{{15}} = \frac{{\sqrt {15}  - 20x}}{{300}}\) (giờ)

Để hai bạn không phải chờ nhau thì:

\(\begin{array}{l}\frac{{\sqrt {{x^2} + 0,0025} }}{5} = \frac{{\sqrt {15}  - 20x}}{{300}}\\ \Leftrightarrow 60\sqrt {{x^2} + 0,0025}  = \sqrt {15}  - 20x\end{array}\)

Bình phương hai vế của phương trình trên ta được:

\(\begin{array}{l}3600\left( {{x^2} + 0,0025} \right) = 15 - 40\sqrt {15} x + 400{x^2}\\ \Leftrightarrow 3200{x^2} + 40\sqrt {15} x - 6 = 0\end{array}\)

\( \Leftrightarrow x = \frac{{ - \sqrt {15}  - 3\sqrt 7 }}{{160}}\) hoặc \(x = \frac{{ - \sqrt {15}  + 3\sqrt 7 }}{{160}}\)

Thay lần lượt các giá trị này vào phương trình đầu, ta thấy cả 2 giá trị đều thỏa mãn

Do x>0 nên ta chọn \(x = \frac{{ - \sqrt {15}  + 3\sqrt 7 }}{{160}}\)

\( \Rightarrow BC = BH - CH = \frac{{\sqrt {15} }}{{20}} - \frac{{ - \sqrt {15}  + 3\sqrt 7 }}{{160}} \approx 0,1682(km) = 168,2(m)\)

Vậy vị trí C thỏa mãn đề bài là điểm cách B khoảng 168,2 m

Các bài tập cùng chuyên đề

Bài 1 :

Luyện tập – vận dụng 1 trang 57 SGK Toán 10 tập 1 – Cánh diều

Giải phương trình: \(\sqrt {3{x^2} - 4x + 1}  = \sqrt {{x^2} + x - 1} \)

Xem lời giải >>
Bài 2 :

Trong các phát biểu sau, phát biểu nào là đúng?

A. Tập nghiệm của phương trình \(\sqrt {f\left( x \right)}  = \sqrt {g\left( x \right)} \) là tập nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\)

B. Tập nghiệm của phương trình \(\sqrt {f\left( x \right)}  = \sqrt {g\left( x \right)} \) là tập nghiệm của phương trình \({\left[ {f\left( x \right)} \right]^2} = {\left[ {g\left( x \right)} \right]^2}\)

C. Tập nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\) là tập nghiệm của phương trình \(\sqrt {f\left( x \right)}  = \sqrt {g\left( x \right)} \)

D. Tập nghiệm của phương trình \(\sqrt {f\left( x \right)}  = \sqrt {g\left( x \right)} \) là tập nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\) thỏa mãn bất phương trình \(f\left( x \right) \ge 0\) (hoặc \(g\left( x \right) \ge 0\))

Xem lời giải >>
Bài 3 :

Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\) thỏa mãn một trong hai bất phương trình \(f\left( x \right) \ge 0\) hoặc \(g\left( x \right) \ge 0\) mà không cần kiểm tra thỏa mãn đồng thời hai bất phương trình đó để kết luận nghiệm của phương trình \(\sqrt {f\left( x \right)}  = \sqrt {g\left( x \right)} \).

Xem lời giải >>
Bài 4 :

Giải các phương trình sau:

a) \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \)

b) \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \)

Xem lời giải >>
Bài 5 :

Cho phương trình \(\sqrt {{x^2} - 3x + 2}  = \sqrt { - {x^2} - 2x + 2} \).

a) Bình phương hai vế của phương trình để khử căn và giải phương trình bậc hai nhận được.

b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không.

Xem lời giải >>
Bài 6 :

Giải các phương trình sau:

a) \(\sqrt {3{x^2} - 4x - 1}  = \sqrt {2{x^2} - 4x + 3} \)

b) \(\sqrt {{x^2} + 2x - 3}  = \sqrt { - 2{x^2} + 5} \)

c) \(\sqrt {2{x^2} + 3x - 3}  = \sqrt { - {x^2} - x + 1} \) 

d) \(\sqrt { - {x^2} + 5x - 4}  = \sqrt { - 2{x^2} + 4x + 2} \)

Xem lời giải >>
Bài 7 :

Giải phương trình \(\sqrt {31{x^2} - 58x + 1}  = \sqrt {10{x^2} - 11x - 19} \).

Xem lời giải >>
Bài 8 :

Lời giải cho phương trình \(\sqrt { - 2{x^2} - 2x + 11}  = \sqrt { - {x^2} + 3} \) như sau đúng hai sai?

\(\)\(\sqrt { - 2{x^2} - 2x + 11}  = \sqrt { - {x^2} + 3} \)           

\( \Rightarrow  - 2{x^2} - 2x + 11 =  - {x^2} + 3\) (bình phương cả hai vế để làm mất dấu căn)

\( \Rightarrow {x^2} + 2x - 8 = 0\)  (chuyển vế, rút gọn)

\( \Rightarrow x = 2\) hoặc \(x =  - 4\)  (giải phương trình bậc hai)

Vậy phương trình đã cho có hai nghiệm là 2 và -4

Xem lời giải >>
Bài 9 :

Trong hình bên, các tam giác vuông được xếp với nhau để tạo thành một đường tương tự đường xoắn ốc. Với x bằng bao nhiêu thì \(OA = \frac{1}{2}OC\)?

Xem lời giải >>
Bài 10 :

Giải các phương trình chứa căn thức sau:

a) \(\sqrt {2{x^2} - 6x + 3}  = \sqrt {{x^2} - 3x + 1} \).

b) \(\sqrt {{x^2} + 18x - 9}  = 2x - 3\).

Xem lời giải >>
Bài 11 :

Giải các phương trình sau:

a) \(\sqrt { - {x^2} + 77x - 212}  = \sqrt {{x^2} + x - 2} \)

b) \(\sqrt {{x^2} + 25x - 26}  = \sqrt {x - {x^2}} \)

c) \(\sqrt {4{x^2} + 8x - 37}  = \sqrt { - {x^2} - 2x + 3} \)

Xem lời giải >>
Bài 12 :

Tìm điều kiện của tham số m để phương trình sau có nghiệm:

\(\sqrt {2{x^2} + x + 1}  = \sqrt {{x^2} + mx + m - 1} \) (1)

Xem lời giải >>
Bài 13 :

Tập nghiệm của phương trình \(\sqrt {2{x^2} - 5x + 1}  = \sqrt {{x^2} + 2x - 9} \) (1) là:

A. \(S = {\rm{\{ 2}}\} \)     

B.  \(S = {\rm{\{ }}5\} \) 

C.  \(S = \emptyset \) 

D. \(S = {\rm{\{ 2}};5\} \)

Xem lời giải >>
Bài 14 :

Giải các phương trình sau:

a) \(2\sqrt {{x^2} + 4x - 7}  = \sqrt { - 4{x^2} + 38x - 43} \)

b) \(\sqrt {6{x^2} + 7x - 1}  - \sqrt { - 29{x^2} - 41x + 10}  = 0\)

Xem lời giải >>
Bài 15 :

Giá trị nào là nghiệm của phương trình \(\sqrt {{x^2} + x + 11}  = \sqrt { - 2{x^2} - 13x + 16} \)?

A. \(x =  - 5\)                                                   

B. \(x = \frac{1}{3}\)

C. Cả hai câu A, B đều đúng               

D. Cả hai câu A, B đều sai

Xem lời giải >>
Bài 16 :

Khẳng định nào đúng với phương trình \(\sqrt {2{x^2} - 3x - 1}  = \sqrt {3{x^2} - 2x - 13} \)?

A. Phương trình có hai nghiệm phân biệt cùng dấu

B. Phương trình có hai nghiệm phân biệt trái dấu

C. Phương trình có một nghiệm

D. Phương trình vô nghiệm

Xem lời giải >>
Bài 17 :

Số nghiệm của phương trình $\sqrt {{x^2} + 2x + 4}  = \sqrt {2 - x} $ là:

Xem lời giải >>
Bài 18 :

Tìm số nghiệm của phương trình sau \(\sqrt {2x - 3}  = \sqrt {4{x^2} - 15} \)

Xem lời giải >>