Tìm x,y,z biết:
a) \(\dfrac{x}{3} = \dfrac{y}{8} = \dfrac{z}{5}\) và x + y – z = 30
b) \(\dfrac{x}{{10}} = \dfrac{y}{5}\);\(\dfrac{y}{2} = \dfrac{z}{3}\) và x + 4z = 320
Sử dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x \pm y \pm z}}{{a \pm b \pm c}}\)
a) Vì đề bài cho \(\dfrac{x}{3} = \dfrac{y}{8} = \dfrac{z}{5}\) mà x + y – z = 30 nên áp dụng tính chất của dãy tỉ số bằng nhau\( \Rightarrow \dfrac{x}{3} = \dfrac{y}{8} = \dfrac{z}{5} = \dfrac{{x + y - z}}{{3 + 8 - 5}} = \dfrac{{30}}{6} = 5\)
\( \Rightarrow \dfrac{x}{3} = 5 \Rightarrow x = 15\);
\(\dfrac{y}{8} = 5\)\( \Rightarrow y = 40\);
\(\dfrac{z}{5} = 5 \Rightarrow z = 25\)
Vậy x = 15, y = 40, z = 25.
b) Cách 1.
Ta có :
\( \Rightarrow \dfrac{x}{{10}} = \dfrac{y}{5} \Rightarrow 5x = 10y \Rightarrow y = \dfrac{x}{2}\)
Tương tự \( \Rightarrow \dfrac{y}{2} = \dfrac{z}{3} \Rightarrow 3y = 2z \Rightarrow y = \dfrac{{2z}}{3}\)
\( \Rightarrow \dfrac{x}{2} = \dfrac{{2z}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\( \Rightarrow \dfrac{x}{2} = \dfrac{{4z}}{6} = \dfrac{{x + 4z}}{8} = 40\)
\( \Rightarrow \dfrac{x}{2} = 40 \Rightarrow x = 80\);
\( \dfrac{{4z}}{6} = 40 \Rightarrow z = 60\)
Thay \(x = 80\) vào \( \dfrac{x}{{10}} = \dfrac{y}{5} \Rightarrow \dfrac{{80}}{{10}} = \dfrac{y}{5} \Rightarrow 400 = 10y \Rightarrow y = 40\)
Vậy x = 80, y = 40, z = 60.
Cách 2.
Ta có:
\(\frac{x}{{10}} = \frac{y}{5}\) nên \(\frac{x}{{10}}.\frac{1}{2} = \frac{y}{5}.\frac{1}{2}\) hay \(\frac{x}{{20}} = \frac{y}{{10}}\)
\(\frac{y}{2} = \frac{z}{3}\) nên \(\frac{y}{2}.\frac{1}{5} = \frac{z}{3}.\frac{1}{5}\) hay \(\frac{y}{{10}} = \frac{z}{{15}}\)
Từ đó ta có: \(\frac{x}{{20}} = \frac{y}{{10}} = \frac{z}{{15}}\)
Vì \(x + 4z = 320\) và \(\frac{x}{{20}} = \frac{z}{{15}}\) nên áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{{20}} = \frac{z}{{15}} = \frac{{x + 4z}}{{20 + 4.15}} = \frac{{320}}{{80}} = 4\)
Suy ra \(x = 4.20 = 80\), \(z = 4.15 = 60\)
Vì \(\frac{x}{{10}} = \frac{y}{5}\) nên \(\frac{{80}}{{10}} = \frac{y}{5}\) suy ra \(y = \frac{{80}}{{10}}.5 = 40\)
Vậy x = 80, y = 40, z = 60.
Các bài tập cùng chuyên đề
Làm thế nào để biểu diễn sự bằng nhau của ba tỉ số \(\frac{1}{2};\frac{2}{4};\frac{3}{6}\)?
Viết dãy tỉ số bằng nhau từ các tỉ số:
\(\frac{1}{4};\frac{8}{{32}};\frac{{13}}{{54}};\frac{{ - 9}}{{ - 36}}\)
a) Cho tỉ lệ thức\(\frac{6}{{10}} = \frac{9}{{15}}\). So sánh hai tỉ số \(\frac{{6 + 9}}{{10 + 15}}\) và \(\frac{{6 - 9}}{{10 - 15}}\) với các tỉ số trong tỉ lệ thức đã cho.
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với \(b + d \ne 0;b - d \ne 0\)
Gọi giá trị trung của các tỉ số đó là k, tức là: \(k = \frac{a}{b} = \frac{c}{d}\)
- Tính a theo b và k, tính c theo d và k.
- Tính tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) theo k.
- So sánh mỗi tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) với các tỉ số \(\frac{a}{b}\) và \(\frac{c}{d}\)
Tìm hai số x,y biết:
x : 1,2 = y : 0,4 và x – y = 2.
Tìm ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 và x – y – z = 2.
Ba máy bơm cùng bơm nước vào một bể bơi không có nước, có dạng hình hộp chữ nhật, với các kích thước bể là 12 m; 10 m; 1,2 m. Lượng nước mà ba máy bơm được tỉ lệ với 3 số 7;8;9. Mỗi máy cần bơm bao nhiêu mét khối nước để đầy bể bơi?
Cho tỉ lệ thức \(\frac{x}{7} = \frac{y}{2}\). Tìm hai số x,y biết:
a) x + y = 18; b) x – y = 20
Cho dãy tỉ số bằng nhau \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\). Tìm ba số x,y,z biết:
a) x+y+z = 180; b) x + y – z = 8
Cho ba số x,y,z sao cho \(\frac{x}{3} = \frac{y}{4};\frac{y}{5} = \frac{z}{6}\)
a) Chứng minh: \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\)
b) Tìm ba số x,y,z biết x – y + z = - 76
Cho \(\frac{a}{b} = \frac{c}{d}\) với b – d \( \ne \) 0; b + 2d \( \ne \) 0. Chứng tỏ rằng:
\(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\)
Tìm ba số x,y,z biết: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{9}\) và x – y + z = \(\frac{7}{3}\)
Ba lớp 7A, 7B và 7C được giao nhiệm vụ trồng 120 cây để phủ xanh đổi trọc. Tính số cây trồng được của mỗi lớp, biết số cây trồng được của ba lớp 7A, 7B và 7C tỉ lệ với 7; 8; 9.
Tìm hai số x, y biết:
a) \(\dfrac{x}{3} = \dfrac{y}{4}\) và \(x + y = 14\);
b) \(\dfrac{x}{4} = \dfrac{y}{{ - 7}}\) và \(x - y = 33\);
c) \(x:y = 2\dfrac{2}{3}\) và \(x - y = 60\);
d) \(x:3 = y:16\) và \(3x - y = 35\).
Tìm ba số x, y, z biết:
a) \(\dfrac{x}{3} = \dfrac{y}{5} = \dfrac{z}{6}\) và \(x + y + z = 98\);
b) \(\dfrac{x}{5} = \dfrac{y}{{ - 6}} = \dfrac{z}{7}\) và \(x - y - z = 16\);
c) \(x:y:z = 2:3:4\) và \(x + 2y - z = - 8\);
d) \(\dfrac{x}{{ - 3}} = \dfrac{y}{4};{\rm{ }}\dfrac{y}{2} = \dfrac{z}{3}\) và \(x + y + z = 14\).
Cho tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\), hãy chứng tỏ mỗi tỉ lệ thức sau:
a) \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\);
b) \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\).
Tìm ba số x, y, z biết:
a) \(2x = 3y;{\rm{ }}5y = 7z\) và \(3x - 7y + 5z = 30\);
b) \(\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\) và \(x - 2y + 3z = 14\).
Cho các số a, b, c thỏa mãn \(\dfrac{a}{{2{\rm{ }}020}} = \dfrac{b}{{2{\rm{ }}021}} = \dfrac{c}{{2{\rm{ }}022}}\). Chứng tỏ rằng:
\(4(a - b)(b - c) = {(c - a)^2}\).
Tìm hai số x và y biết: \(\dfrac{x}{{11}} = \dfrac{y}{{17}}\) và x – y = 12
Tìm hai số x và y, biết: \(\dfrac{x}{9} = \dfrac{y}{{11}}\) và x+y = 40
Tìm hai số x và y, biết: \(\dfrac{x}{{17}} = \dfrac{y}{{21}}\) và x - y= 8
Tìm x và y, biết: a) \(\dfrac{x}{y} = \dfrac{5}{3}\) và x+y = 16; b) \(\dfrac{x}{y} = \dfrac{9}{4}\) và x – y = -15
Tìm ba số x,y,z biết rằng: \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4}\) và x+2y – 3z = -12
Cho tỉ lệ thức \(\dfrac{3}{7} = \dfrac{9}{{21}}\). Hãy tính các tỉ số \(\dfrac{{3 + 9}}{{7 + 21}}\) và \(\dfrac{{3 - 9}}{{7 - 21}}\) rồi so sánh chúng với các tỉ số trong tỉ lệ thức đã cho.
Tìm hai số x, y biết rằng:
a) x + y = 30 và \(\dfrac{x}{2}\)= \(\dfrac{y}{3}\)
b) x – y = −21 và \(\dfrac{x}{5}\)= \(\dfrac{y}{{ - 2}}\)
a) Nguyên liệu của món mứt dừa sau khi hoàn thành chỉ gồm dừa và đường theo tỷ lệ 2 : 1. Tính xem trong 6 kg mứt dừa có bao nhiêu ki-lô-gam dừa và bao nhiêu ki-lô-gam đường.
b) Bạn Dũng và bạn Thủy muốn làm mứt gừng theo công thức: Cứ 3 phần gừng thì cần 2 phần đường. Hai bạn mua 600g gừng. Hai bạn cần mua bao nhiêu gam đường?
c) Mẹ chỉ có 10 quyển vở, số vở chia cho hai chị em An và Bình. Tính số sách chia cho mỗi em, biết rằng số tuổi của An và Bình là 8; 12 và số sách tỉ lệ thuận với số tuổi
Tìm ba số x, y, z, biết x + y + z = 100 và x : y : z = 2 : 3 : 5
Tìm hai số x,y biết rằng:
a) \(\dfrac{x}{4} = \dfrac{y}{7}\) và x + y = 55
b) \(\dfrac{x}{8} = \dfrac{y}{3}\) và x – y = 35
a) Tìm hai số a,b biết rằng 2a = 5b và 3a + 4b = 46
b) Tìm hai số a,b,c biết rằng a : b : c = 2 : 4 : 5 và a + b – c = 3
Một công ty có ba chi nhánh A, B, C. Kết quả kinh doanh trong tháng vừa qua ở các chi nhánh A và B có lãi còn chi nhánh C lỗ. Cho biết số tiền lãi, lỗ của ba chi nhánh A, B, C tỉ lệ với các số 3; 4; 2. Tìm số tiền lãi, lỗ của mỗi chi nhánh trong tháng vừa qua, biết rằng trong tháng đó công ty lãi được 500 triệu đồng.
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) ta suy ra được các tỉ lệ thức sau:
a) \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\) (các mẫu số phải khác 0)