Tìm thương và dư (nếu có) trong các phép chia sau:
\(\begin{array}{l}a)\left( {3{{\rm{x}}^4}y - 9{{\rm{x}}^3}{y^2} - 21{{\rm{x}}^2}{y^2}} \right):\left( {3{{\rm{x}}^2}y} \right)\\b)\left( {2{{\rm{x}}^3} + 5{{\rm{x}}^2} - 2{\rm{x}} + 12} \right):\left( {2{{\rm{x}}^2} - x + 1} \right)\end{array}\)
Sử dụng lệnh Division(<đa thức bị chia>, <đa thức chia>) để tìm thương và dư của phép chia hai đa thức.
a) Tìm thương và dư (nếu có) trong các phép chia \(\left( {3{{\rm{x}}^4}y - 9{{\rm{x}}^3}{y^2} - 21{{\rm{x}}^2}{y^2}} \right):\left( {3{{\rm{x}}^2}y} \right)\)
• Sử dụng lệnh Division(<đa thức bị chia>, <đa thức chia>) để tìm thương và dư của phép chia hai đa thức.
• Nhập biểu thức trên dòng lệnh của cửa sổ CAS sau đó nhấn Enter, kết quả sẽ được hiển thị ngay bên dưới.
Vậy phép chia hai đa thức \(\left( {3{{\rm{x}}^4}y - 9{{\rm{x}}^3}{y^2} - 21{{\rm{x}}^2}{y^2}} \right)\) cho \(3{{\rm{x}}^2}y\), ta được thương là \({x^2} - 3{\rm{x}}y - 7y\) và dư 0.
b) Tìm thương và dư (nếu có) trong các phép chia (2x3 + 5x2 – 2x + 12) : (2x2 – x + 1).
• Sử dụng lệnh Division(<đa thức bị chia>, <đa thức chia>) để tìm thương và dư của phép chia hai đa thức.
• Nhập biểu thức trên dòng lệnh của cửa sổ CAS sau đó nhấn Enter, kết quả sẽ được hiển thị ngay bên dưới.
Vậy phép chia hai đa thức (2x3 + 5x2 – 2x + 12) cho (2x2 – x + 1), ta được thương là x + 3 và dư 9.
Các bài tập cùng chuyên đề
Tính:
\(\left( {3{{\rm{x}}^2}y + 5{\rm{x}}y - 2} \right)\left( {4{\rm{x}} + 3y} \right) - 6{{\rm{x}}^2}\left( {2{\rm{x}}y + \frac{3}{2}{y^2} + \frac{{10}}{3}y} \right)\)
Khai triển các biểu thức sau:
\(\begin{array}{l}a){\left( {5{\rm{x}} - y} \right)^2}\\b){\left( {\frac{1}{2}x + 2y} \right)^3}\end{array}\)
Phân tích các đa thức sau thành nhân tử:
\(\begin{array}{l}a){x^4} - 4{{\rm{x}}^3} - 7{{\rm{x}}^2} + 8{\rm{x}} + 10\\b){\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3}\end{array}\)