Trong không gian, cho ba đường thẳng phân biệt $a,\,\,b,\,\,c$ trong đó $a\,{\text{//}}\,b$. Khẳng định nào sau đây sai?
Trong không gian, cho ba đường thẳng phân biệt $a,\,\,b,\,\,c$ trong đó $a\,{\text{//}}\,b$. Khẳng định nào sau đây sai?
-
A.
Nếu $a\,{\text{//}}\,c$ thì $b\,{\text{//}}\,c$.
-
B.
Nếu $c$ cắt $a$ thì $c$ cắt $b$.
-
C.
Nếu $A \in a$ và $B \in b$ thì ba đường thẳng $a,\,\,b,\,\,AB$ cùng ở trên một mặt phẳng.
-
D.
Tồn tại duy nhất một mặt phẳng qua $a$ và $b$.
B sai vì c cắt a thì c sẽ cắt b khi và chỉ khi a, b, c đồng phẳng.
Đáp án : B
Các bài tập cùng chuyên đề
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M là trung điểm của đoạn thẳng SD (H.4.28)
a) Xác định giao tuyến của hai mặt phẳng (MAB) và (SCD).
b) Gọi N là giao điểm của đường thẳng SC và mặt phẳng (MAB). Chứng minh rằng MN là đường trung bình của tam giác SCD.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD và P là một điểm thuộc cạnh AC.
a) Xác định giao tuyến d của hai mặt phẳng (AMN) và (BPD)
b) Chứng minh rằng d song song với BD
(Đố vui) Khi hai cánh cửa sổ hình chữ nhật được mở, dù ở vị trí nào, thì hai mép ngoài của chúng luôn song song với nhau (H.4.29). Hãy giải thích tại sao?
Nếu hai cánh cửa sổ có dạng hình thang như Hình 4.30 thì có vị trí nào của hai cánh cửa để hai mép ngoài của chúng song song với nhau hay không?
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \(\left( {ICD} \right)\) cắt \(SA,SB\) lần lượt tại \(M,N\).
a) Hãy nói cách xác định hai điểm \(M\) và \(N\). Cho \(AB = a\). Tính \(MN\) theo \(a\).
b) Trong mặt phẳng \(\left( {CDMN} \right)\), gọi \(K\) là giao điểm của \(CN\) và \(DM\). Chứng minh \(SK\parallel BC\parallel AD\).
Cho hình hộp chữ nhật ABCD.A’B’C’D’ như hình. Mệnh đề nào sau đây là sai?
Cho tứ diện ABCD, M thuộc đoạn AB, thiết diện của hình chóp cắt bởi mặt phẳng \(\left( \alpha \right)\) đi qua M song song với BD và AC là hình có mấy cạnh?
Cho hình chóp tứ giác \(S.ABCD\). Gọi \(G\), \(K\) lần lượt là trọng tâm của các tam giác \(SAB\) và \(SAD\); \(M\), \(N\) lần lượt là trung điểm của các cạnh \(BC\) và \(CD\). Chứng minh rằng \(GK\parallel MN\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I\), \(J\),\(K\), \(L\) lần lượt là trọng tâm của các tam giác \(SAB\), \(SBC\), \(SCD\), \(SAD\).
a) Chứng minh rằng bốn điểm \(I\), \(J\),\(K\), \(L\) đồng phẳng và tứ giác \(IJKL\) là hình bình hành.
b) Chứng minh rằng \(JL\parallel {\rm{CD}}\).
c) Xác định giao tuyến của hai mặt phẳng \(\left( {IJKL} \right)\) và \(\left( {SCD} \right)\).
Cho tứ diện \(ABCD\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\), \(AD\); \(P\), \(Q\) lần lượt thuộc các cạnh \(CD\), \(BC\) (\(P\), \(Q\) không trùng với \(B\), \(C\), \(D\)). Chứng minh rằng nếu \(M\), \(N\), \(P\), \(Q\) cùng thuộc một mặt phẳng thì \(PQ\) song song với \(BD\).
Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Xác định giao tuyến của hai mặt phẳng (ANP) và (CMQ).
b) Xác định giao tuyến của hai mặt phẳng (ANP) và (ABD).
c) Xác định giao tuyến của hai mặt phẳng (CMQ) và (BCD).
d) Chứng minh rằng các giao tuyến ở trên đôi một song song với nhau.
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi G, H lần lượt là giao điểm của hai đường chéo của hai hình bình hành đó. Chứng minh rằng ba đường thẳng GH, CE, DF đôi một song song.
Cho hình chóp ngũ giác S.ABCDE. Giả sử AB song song với DE.
a) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBE).
b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SDE).
c) Giả sử giao tuyến của hai mặt phẳng (SAE) và (SBC) song song với đường thẳng AE. Chứng minh AE//BC
Cho tứ diện \(ABCD.\) Gọi \(I,\,\,J\) lần lượt là trọng tâm của các tam giác \(ABC\) và \(ABD.\) Khẳng định nào sau đây đúng?
Cho tứ diện $ABCD.$ Gọi $M,\,N$ lần lượt là các điểm thuộc các cạnh $AB,\,AC$ sao cho $\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}$; $I,\,J$ lần lượt là trung điểm của $BD$ và $CD.$
Khẳng định nào sau đây đúng?
Cho hình chóp S.ABCD có ABCD là hình thang với hai cạnh đáy là AD và BC, đáy lớn là AD. Gọi M, N là lần lượt là trung điểm của SA và SD.
Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB và BC. P là điểm thuộc CD sao cho PD = 2PC. Gọi Q là giao diểm của đường thẳng AD và mặt phẳng (MNP). Tính tỉ số \(\frac{{AQ}}{{AD}}\) (làm tròn đến hàng phần trăm).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Gọi M là trung điểm của BC, N là điểm thuộc cạnh SC sao cho \(\frac{{SN}}{{SC}} = \frac{1}{4}\). Gọi E là giao điểm của MN và d, F là giao điểm của AE và SD. Tính tỉ số \(\frac{{{S_{FDA}}}}{{{S_{FSE}}}}\)?
Cho tứ diện ABCD có I, J lần lượt là trung điểm của các cạnh BC và BD. Gọi (P) là mặt phẳng qua I, J và cắt hai cạnh AC và AD lần lượt tại M và N. Để IJNM là hình thoi thì AC = kAM và AB = mCD. Khi đó giá trị của k + m bằng bao nhiêu?