Đề bài

Chứng minh rằng:

a) Phương trình \({x^3} + 5{x^2} - 8{\rm{x}} + 4 = 0\) có duy nhất một nghiệm.

b) Phương trình \( - {x^3} + 3{x^2} + 24x - 1 = 0\) có ba nghiệm phân biệt.

Phương pháp giải

Xét hàm số \(y = f\left( x \right)\), lập bảng biến thiên, xem xét giao điểm của đồ thị hàm số với đường thẳng \(y = 0\) và kết luận.

Lời giải của GV Loigiaihay.com

a) Đặt \(y = {x^3} + 5{x^2} - 8{\rm{x}} + 4\).

Tập xác định: \(D = \mathbb{R}\).

Ta có \(y' = 3{x^2} + 10x - 8;y' = 0 \Leftrightarrow x =  - 4\) hoặc \({\rm{x}} = \frac{2}{3}\).

Bảng biến thiên:

Từ bảng biển thiên, ta thấy đường thẳng \(y = 0\) giao với đồ thị của hàm số tại đúng một điểm trong khoảng \(\left( { - \infty ; - 4} \right)\). Do đó phương trình \({x^3} + 5{x^2} - 8{\rm{x}} + 4 = 0\) có duy nhất một nghiệm.

b) Đặt \(y =  - {x^3} + 3{x^2} + 24x - 1\).

Tập xác định: \(D = \mathbb{R}\).

Ta có \(y' =  - 3{x^2} + 6x + 24;y' = 0 \Leftrightarrow x = 4\) hoặc \({\rm{x}} =  - 2\).

Bảng biến thiên:

Từ bảng biển thiên, ta thấy đường thẳng \(y = 0\) giao với đồ thị của hàm số tại ba điểm phân biệt. Do đó phương trình \( - {x^3} + 3{x^2} + 24x - 1 = 0\) có ba nghiệm phân biệt.

Các bài tập cùng chuyên đề

Bài 1 :

Đồ thị của đạo hàm bậc nhất \(y = f'\left( x \right)\) của hàm số f(x) được cho trong Hình 1.13:
a) Hàm số f(x) đồng biến trên những khoảng nào? Giải thích.
b) Tại giá trị nào của x thì f(x) có cực đại hoặc cực tiểu? Giải thích.

Xem lời giải >>
Bài 2 :

Cho hàm số \(y = 3{x^4} + 2\left( {m - 2018} \right){x^2} + 2017\) với \(m\) là tham số thực. Tìm giá trị của \(m\) để đồ thị hàm số có ba điểm cực trị tạo thành tam giác có một góc bằng \({120^0}\).

Xem lời giải >>
Bài 3 :

Cho hàm số $y = {x^4} - 2m{x^2} + {m^2} + m.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác có một góc ${120^o}$ là:

Xem lời giải >>
Bài 4 :

Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

A. \(y =  - {x^3} + 3{x^2} + 1\).

B. \(y = {x^3} - 3{x^2} + 3\).

C. \(y =  - {x^2} + 2x + 1\).

D. \(y = \frac{{x + 1}}{{x - 1}}\).

 
Xem lời giải >>
Bài 5 :

Cho hai hàm số \(y = f\left( x \right),y = g\left( x \right)\) có đồ thị hàm số lần lượt ở Hình 6a, Hình 6b. Nêu khoảng đồng biến, nghịch biến và điểm cực trị của mỗi hàm số đó.

Xem lời giải >>
Bài 6 :

Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 11.

 
Xem lời giải >>
Bài 7 :

Xét tính đơn điệu và tìm điểm cực trị của các hàm số sau:
a) \(y = 4{x^3} + 3{x^2}--36x + 6\)
b) \(y = \frac{{{x^2} - 2x - 7}}{{x - 4}}\)

 
Xem lời giải >>
Bài 8 :

Đạo hàm f'(x) của hàm số y = f(x) có đồ thị như Hình 12. Xét tính đơn điệu và tìm điểm cực trị của hàm số y = f(x).

 
Xem lời giải >>
Bài 9 :

Cho hàm số f(x) xác định trên R có bảng biến thiên như sau:

Xem lời giải >>
Bài 10 :

Ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc \({120^o}\) và có độ lớn lần lượt là 25 N và 12 N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn 4 N. Tính độ lớn (đơn vị: N) của hợp lực của ba lực trên (làm tròn kết quả đến hàng đơn vị).

Xem lời giải >>
Bài 11 :

Giá trị của tham số m để đồ thị hàm số \(y = {x^3} - 3{x^2} + m\) có hai điểm cực trị A, B thỏa mãn OA = OB (O là gốc tọa độ) có dạng \(\frac{a}{b}\) là một phân số tối giản. Tính a + b.

Xem lời giải >>
Bài 12 :

Hình bên là đồ thị của hàm số f’(x). Hỏi hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

Xem lời giải >>
Bài 13 :

Giả sử một công ty du lịch bán tour với giá là x /khách thì doanh thu sẽ được biểu diễn qua hàm số \(f(x) =  - 200{x^2} + 550x\). Công ty phải bán giá tour cho một khách là bao nhiêu (đơn vị: triệu đồng) để doanh thu từ tua xuyên Việt là lớn nhất (kết quả làm tròn đến hàng phần trăm)?

Xem lời giải >>
Bài 14 :

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và đạo hàm \(f'\left( x \right)\) có đồ thị như hình bên. Sử dụng đồ thị của hàm số \(y = f'\left( x \right)\), hãy cho biết:

a) Các khoảng đồng biến, khoảng nghịch biến của hàm số \(f\left( x \right)\);

b) Hàm số \(f\left( x \right)\) có cực đại, cực tiểu không? Nếu có, hãy cho biết các điểm cực trị tương ứng.

Xem lời giải >>
Bài 15 :

Tìm các khoảng đồng biến, khoảng nghịch biến và cực trị (nếu có) của các hàm số sau:

a) \(y = {x^3} - 9{x^2} - 48x + 52\);

b) \(y =  - {x^3} + 6{x^2} + 9\).

Xem lời giải >>
Bài 16 :

Xét tính đơn điệu và tìm các cực trị (nếu có) của các hàm số sau:

a) \(y = x + \frac{1}{x}\);

b) \(y = \frac{x}{{{x^2} + 1}}\).

Xem lời giải >>
Bài 17 :

Tìm các khoảng đơn điệu và các cực trị (nếu có) của các hàm số sau:

a) \(y = {x^4} - 2{x^2} + 3\);

b) \(y = {x^2}\ln x\).

Xem lời giải >>
Bài 18 :

Chứng minh rằng hàm số \(f\left( x \right) = \sqrt[3]{{{x^2}}}\) không có đạo hàm tại \(x = 0\) nhưng có cực tiểu tại điểm \(x = 0\).

Xem lời giải >>
Bài 19 :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) =  - x\left( {2x - 5} \right),\forall x \in \mathbb{R}\). Khẳng định nào dưới đây đúng?

A. \(f\left( { - 2} \right) < f\left( { - 1} \right)\).                                

B. \(f\left( 0 \right) > f\left( 2 \right)\).           

C. \(f\left( 3 \right) > f\left( 5 \right)\).          

D. \(f\left( 3 \right) > f\left( 2 \right)\).

Xem lời giải >>
Bài 20 :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 7. Số điểm cực trị của hàm số \(y = f\left( x \right)\) là:

A. 4.

B. 3.

C. 2.

D. 1.

Xem lời giải >>
Bài 21 :

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).
Cho hàm số \(y = {2^{{x^2} - 1}}\).
a) \(y' = \left( {{x^2} - 1} \right){.2^{{x^2} - 2}}\).
b) \(y' = 0\) khi \(x = - 1,x = 1\).
c) \(y\left( { - 2} \right) = 8,y\left( { - 1} \right) = 1,y\left( 1 \right) = 1\).
d) Trên đoạn \(\left[ { - 2;1} \right]\), hàm số đạt giá trị nhỏ nhất bằng 1, giá trị lớn nhất bằng 8.

Xem lời giải >>
Bài 22 :

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = {x^3} - 3{\rm{x}} + 2\).
a) \(y' = 3{{\rm{x}}^2} - 3\).
b) \(y' = 0\) khi \(x = - 1,x = 1\).
c) \(y' > 0\) khi \(x \in \left( { - 1;1} \right)\) và \(y' < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).
d) Giá trị cực đại của hàm số là ${{f}_{C}}=0$.

Xem lời giải >>
Bài 23 :

Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 3.

Xem lời giải >>
Bài 24 :

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 8.

a) \(f'\left( x \right) = 0\) khi \(x = 0,x = 1,x = 3\).

b) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\).

c) \(f'\left( x \right) > 0\) khi \(x \in \left( {0;3} \right)\).

d) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {0;3} \right)\).

Xem lời giải >>
Bài 25 :

Xét tính đơn điệu và tìm cực trị của các hàm số:

a) \(y =  - {x^3} - 3{x^2} + 24x - 1\);

b) \(y = {x^3} - 8{x^2} + 5x + 2\);

c) \(y = {x^3} + 2{x^2} + 3x + 1\);

d) \(y =  - 3{x^3} + 3{x^2} - x + 2\).

Xem lời giải >>
Bài 26 :

Xét tính đơn điệu và tìm cực trị của các hàm số:

a) \(y = \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}}\);

b) \(y = \frac{{2{\rm{x}} - 5}}{{3{\rm{x}} + 1}}\);

c) \(y = \sqrt {4 - {x^2}} \);

d) \(y = x - \ln {\rm{x}}\).

Xem lời giải >>
Bài 27 :

Xét tính đơn điệu và tìm cực trị của các hàm số:

a) \(y = \frac{{{x^2} + 8}}{{x + 1}}\);

b) \(y = \frac{{{x^2} - 8x + 10}}{{x - 2}}\);

c) \(y = \frac{{ - 2{x^2} + x + 2}}{{2x - 1}}\);

d) \(y = \frac{{ - {x^2} - 6x - 25}}{{x + 3}}\).

Xem lời giải >>
Bài 28 :

Đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) có đồ thị như Hình 4. Xét tính đơn điệu và tìm các điểm cực trị của hàm số \(y = f\left( x \right)\).

Xem lời giải >>
Bài 29 :

Chứng minh rằng

a) \(\tan x > x\) với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\);

b) \(\ln x \le x - 1\) với mọi \(x > 0\).

Xem lời giải >>
Bài 30 :

Tìm \(m\) để phương trình \(\frac{{{x^2} + x + 4}}{{x + 1}} = m\) có hai nghiệm phân biệt.

Xem lời giải >>