Đề bài

Hai hòn đảo được xem như hai hình tròn có khoảng cách từ tâm hòn đảo này đến tâm hòn đảo kia là khoảng 950 m. Biết rằng hòn đảo lớn có bán kính khoảng 500 m, còn đảo nhỏ có bán kính khoảng 300 m. Người ta cần xây dựng một cây cầu bắc từ đảo này sang đảo kia. Hãy chọn vị trí để xây cầu sao cho chiều dài cây cầu là ngắn nhất, khi đó tính chiều dài cây cầu.

Phương pháp giải

Bước 1: Dựa vào mối quan hệ giữa 3 cạnh trong tam giác, ta có \(AB \ge O'A - O'B\), \(AO' \ge O'O - OA\) (có trường hợp dấu “=” là do có thể xảy ra trường hợp 3 điểm thẳng hàng).

Bước 2: Cộng từng vế của 2 đẳng thức trên.

Bước 3: Tìm giá trị nhỏ nhất của AB và trường hợp dấu “=” xảy ra.

Lời giải của GV Loigiaihay.com

Khoảng cách từ tâm hòn đảo này đến tâm hòn đảo kia là \(OO' = 950m\), bán kính đảo lớn \(OA = 500m\), bán kính đảo nhỏ \(OB = 300m\); chiều dài cây cầu là AB.

Xét 3 điểm O’. A, B ta có \(AB \ge O'A - O'B\)     

Xét 3 điểm O, O’, A ta có \(AO' \ge O'O - OA\)

Do đó \(AB - AO' \ge O'A - O'B - O'O - OA\) hay \(AB \ge O'O - OA - O'B\)

hay \(AB \ge 950 - 500 - 300 = 150\)m.

Dấu “=” xảy ra khi 4 điểm O, A, B, O’ thẳng hàng theo thứ tự đó. Vậy ta nên đặt cây cầu trên đoạn nối tâm của 2 đảo thì cây cầu có chiều dài ngắn nhất là 150m.

Các bài tập cùng chuyên đề

Bài 1 :

Cho đường tròn tâm \(O\) bán kính \(R = 2cm\) và đường tròn tâm \(O'\) bán kính \(R' = 3cm.\) Biết \(OO' = 6cm.\) Số tiếp tuyến chung của hai đường tròn đã cho là:

Xem lời giải >>
Bài 2 :

Cho hai điểm O và O’ sao cho OO’ = 2 cm. Xác định vị trí tương đối của hai đường tròn (O; 5 cm) và (O’; r) , biết rằng r < 3 cm.

Xem lời giải >>
Bài 3 :

Mỗi bánh xe đạp ở Hình 1 gợi nên hình ảnh của một đường tròn. Hai đường tròn đó có điểm chung hay không?

Xem lời giải >>
Bài 4 :

Hình 14 mô tả hai bánh xe rời xa nhau, gợi nên hình ảnh hai đường tròn không giao nhau. Theo em, hai đường tròn không giao nhau thì có bao nhiêu điểm chung.

 

Xem lời giải >>
Bài 5 :

Cho hai đường tròn \(\left( {O;11,5cm} \right),\left( {O';6,5cm} \right)\) với độ dài \(OO' = 4cm\). Xét vị trí tương đối của hai đường tròn đó.

Xem lời giải >>
Bài 6 :

Trong Hình 5.22, hai bể xử lí nước có dạng hình tròn có tâm ở hai điểm A, B và bán kính bằng nhau. Chiều dài của chiếc cầu nối hai tâm của bể nước là \(AB = 20,7m\). Gọi C và D lần lượt là giao điểm của đoạn thẳng AB với hai đường tròn. Biết \(CD = 0,7m\), tính bán kính mỗi bể nước.

Xem lời giải >>
Bài 7 :

Nếu hai đường tròn không cắt nhau thì số điểm chung của hai đường tròn là:

Xem lời giải >>
Bài 8 :

Cho hai đường tròn đồng tâm O. Biết BC là đường kính của đường tròn lớn và có độ dài bằng 12cm. Dây CD của đường tròn lớn đồng thời là tiếp tuyến của đường tròn nhỏ và \(\widehat {BCD} = 30^\circ \). Hãy tính bán kính đường tròn nhỏ?

Xem lời giải >>