Chứng minh đẳng thức \({\left( {10a + 5} \right)^2}\; = 100a\left( {a + 1} \right) + 25\). Từ đó, em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.
Áp dụng: Tính \({25^2},{35^2}\).
Sử dụng hằng đẳng thức bình phương của một tổng: \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
Ta có \({\left( {10a + 5} \right)^2} = {\left( {10a} \right)^2} + 2.10a.5 + {5^2}\)
\( = 100{a^2} + 100a + 25 = 100a\left( {a + 1} \right) + 25.\)
Quy tắc tính nhẩm: Muốn tính bình phương của một số có tận cùng là 5, ta bỏ chữ số 5 ở tận cùng, được số a, rồi tính tích \(a\left( {a + 1} \right)\), sau đó viết 25 vào bên phải kết quả vừa tìm được.
Áp dụng
Để tính \({25^2}\), ta tính \(100.2.3 = 600\), rồi viết tiếp 25 vào bên phải, ta được kết quả là 625.
Để tính \({35^2}\), ta tính \(100.3.4 = 1200\), rồi viết tiếp 25 vào bên phải, ta được kết quả là 1225.
Các bài tập cùng chuyên đề
Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right).\left( {a + b} \right)\).
Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^2}\) và \({a^2} + 2ab + {b^2}\)
- Khai triển \({\left( {2b + 1} \right)^2}\)
- Viết biểu thức \(9{y^2} + 6yx + {x^2}\) dưới dạng bình phương của một tổng.
Tính nhanh giá trị của biểu thức:
\({x^2} + \dfrac{1}{2}x + \dfrac{1}{{16}}\) tại x=99,75.
Chứng minh đẳng thức \({\left( {10a + 5} \right)^2} = 100a\left( {a + 1} \right) + 25\). Từ đó em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.
Áp dụng: Tính \({25^2};{35^2}\).
Biểu thức \(25{x^2} + 20xy + 4{y^2}\) viết dưới dạng bình phương của một tổng là:
A. \({\left[ {5x + \left( { - 2y} \right)} \right]^2}\)
B. \({\left[ {2x + \left( { - 5y} \right)} \right]^2}\)
C. \({\left( {2x + 5y} \right)^2}\)
D. \({\left( {5x + 2y} \right)^2}\).
Sử dụng Hình 2.3, bằng cách tính diện tích hình vuông ABCD theo hai cách, hãy giải thích hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\).
Tính:
a) \({\left( {3x + 1} \right)^2}\)
b) \({\left( {4x + 5y} \right)^2}\)
c) \({\left( {5x - \dfrac{1}{2}} \right)^2}\)
d) \({\left( { - x + 2{y^2}} \right)^2}\)
Diện tích của hình vuông MNPQ (hình 4) có thể được tính theo những cách nào?
Cho \(a\) và \(b\) là hai số thực bất kì.
1. Thực hiện phép tính \(\left( {a + b} \right)\left( {a + b} \right)\)
2. Hãy cho biết: \({\left( {a + b} \right)^2} = ?\)
Tính:
a) \({\left( {a + 4} \right)^2}\);
b) \({\left( {2u + 5v} \right)^2}\)
Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) \(16{a^2} + 8a + 1\);
b) \({x^2} + 25{y^2} + 10xy\)
Tính nhanh: \( (0,76)^3 + (0,24)^3+3.0,76.0,24 \)
Biểu thức \({\left( {x - 2y} \right)^2}\) bằng:
A. \({x^2} + 2xy + 2{y^2}\)
B. \({x^2} - 2xy + 2{y^2}\)
C. \({x^2} + 4xy + 4{y^2}\)
D. \({x^2} - 4xy + 4{y^2}\)
a) Biết số tự nhiên a chia 3 dư 2. Chứng minh \({a^2}\) chia 3 dư 1.
b) Biết số tự nhiên a chia 5 dư 3. Chứng minh \({a^2}\) chia 5 dư 4.
Chứng minh rằng với mọi số tự nhiên n, ta có:
\({\left( {n + 2} \right)^2}\;-{n^2}\) chia hết cho 4.
Biết số tự nhiên a chia 3 dư 2. Chứng minh rằng \({a^2}\) chia 3 dư 1.
Biểu thức \({x^2} + x + \frac{1}{4}\) viết được dưới dạng bình phương của một tổng là
A.\({\left[ {x + \left( { - \frac{1}{2}} \right)} \right]^2}\).
B.\({\left( {x + \frac{1}{2}} \right)^2}\).
C.\({\left( {2x + \frac{1}{2}} \right)^2}\)
D.\({\left( {\frac{1}{2}x + 1} \right)^2}\)
Tính nhanh giá trị của biểu thức
\({x^2} + \frac{1}{2}x + \frac{1}{{16}}\) tại \(x = 99,75\).
Biểu thức \(25{x^2}\; + 20xy + 4{y^2}\) viết dưới dạng bình phương của một tổng là:
A. \({\left[ {5x\; + \;\left( { - 2y} \right)} \right]^2}\).
B. \({\left[ {2x\; + \;\left( { - 5y} \right)} \right]^2}\).
C. \({\left( {2x + 5y} \right)^2}\).
D. \({\left( {5x + 2y} \right)^2}\).
Sử dụng Hình 2.3, bằng cách tính diện tích hình vuông ABCD theo hai cách, hãy giải thích hằng đẳng thức \({\left( {a + b} \right)^2}\; = {a^2}\; + 2ab + {b^2}\).
Khai triển \((3x+2)^2\) ta được
Cho \({a^2} + {b^2} + {c^2} = ab + bc + ca\;\) và \(a + b + c = 2022\). Tính \(a, b, c\).
Chọn câu đúng:
Khai triển \({\left( {3x + 4y} \right)^2}\), ta được:
Điền vào chỗ trống sau: \({\left( {x + 2} \right)^2} = {x^2} + ... + 4\)