Một chiếc gàu có dạng hình chóp tam giác đều và một chiếc bình có dạng hình lăng trụ đứng tam giác có cùng diện tích đáy. Người ta đổ 6 gàu nước vào bình và đo mực nước trong bình tăng thêm 1,2m. Tính chiều cao của chiếc gàu.
Sử dụng kiến thức về thể tích hình chóp tam giác đều để tính: Thể tích của hình chóp tam giác đều bằng $\frac{1}{3}$ diện tích đáy nhân với chiều cao.
Gọi diện tích đáy của chiếc gàu là S, thể tích của chiếc gàu là V, chiều cao của chiếc gàu là h, ta có: $6V=6.\frac{1}{3}.S.h=2S.h$
Do mực nước trung bình tăng lên 1,2m nên $2Sh=S.1,2$, suy ra $h=0,6m$
Các bài tập cùng chuyên đề
Một bể kính hình hộp chữ nhật có hai cạnh đáy là \(60\)cm và \(30\)cm. Trong bể có một khối đá hình chóp tam giác đều với diện tích đáy là \(270c{m^2}\), chiều cao \(30\)cm. Người ta đổ nước vào bể sao cho nước ngập khối đá và đo được mực nước là \(60\)cm. Khi lấy khối đá ra thì mực nước của bể là bao nhiêu? Biết rằng bề dày của đáy bể và thành bể không đáng kể?
Tính thể tích khối rubik có dạng hình chóp tam giác đều (hình 4). Biết khối rubik này có bốn mặt là các tam giác đều bằng nhau cạnh \(6\)cm và chiều cao \(3\sqrt 3\)cm; chiều cao của khối rubik bằng \(2\sqrt 6\)cm.
Cho một hình chóp tam giác đều có diện tích đáy bằng 15 cm2 và chiều cao 8 cm. Tính thể tích của hình chóp tam giác đều đó.
Dùng một “phễu đong” dạng hình chóp tam giác đều với cạnh đáy dài \(12cm\) và chiều cao bằng \(4cm\) (Hình 4.28a) đong các hạt đỗ đến ngang miệng rồi đổ vào một hộp có dạng hình lăng trụ đứng tam giác với đáy là tam giác đều cạnh \(12cm\) và chiều cao bằng \(4cm\) (Hình 4.28b). Cần đong bao nhiêu lần như vậy để đổ đầy hộp?
Tính diện tích đáy của một hình chóp tam giác đều có chiều cao bằng \(7,5cm\)và thể tích bằng \(62,5c{m^3}.\)
Thể tích của hình chóp tam giác đều sẽ thay đổi như thế nào nếu:
a) Độ dài cạnh đáy không đổi còn chiều cao tăng gấp ba lần?
b) Độ dài cạnh đáy tăng gấp hai lần còn chiều cao không đổi?
Tính thể tích của hình chóp tam giác đều có chiều cao 34cm và tam giác đáy có cạnh 16cm, chiều cao $8\sqrt{3}cm$. (Làm tròn kết quả đến hàng phần mười.)
Cho hình chóp tam giác đều có diện tích đáy bằng \(36c{m^2}\) và chiều cao bằng 9cm. Thể tích của hình chóp này là
A. \(54c{m^3}\)
B. \(72c{m^3}\)
C. \(108c{m^3}\)
D. \(216c{m^3}\)
Cho hình chóp tam giác đều có thể tích bằng 30 cm3 và chiều cao bằng 12 cm. Tính diện tích đáy của hình chóp tam giác đều đó.
Cho hình chóp tam giác đều \(S.ABC\) có độ dài cạnh đáy bằng 9 cm, \(SH\) là chiều cao. Gọi \(M\) là trung điểm của \(BC\) (Hình 5). Tính thể tích của hình chóp \(S.ABC\), biết \(H\) là trọng tâm của tam giác \(ABC\), \(AH = \frac{{\sqrt 3 }}{3}AB\) và \(SH = 2AH\).
Cho hình chóp tam giác đều có thể tích bằng \(32\sqrt 3 c{m^3}\) và diện tích đáy bằng \(4\sqrt 3 c{m^2}\). Tính chiều cao của hình chóp tam giác đều đó.
Một hình chóp tam giác đều có thể tích là \(12\sqrt 3 \,\,c{m^3}\), diện tích đáy là \(9\sqrt 3 \,\,c{m^2}\). Tính chiều cao của hình chóp tam giác đều đó.
Một khối Rubic có dạng hình chóp tam giác đều. Biết chiều cao khoảng \(5,88 cm\), thể tích của khối Rubic là \(44,002 cm^{3}\). Tính diện tích đáy của khối Rubic.
Cho hình chóp tam giác đều S.MNP như H.10.15
a) Tính diện tích tam giác MNP
b) Tính thể tích hình chóp S.MNP, biết \(\sqrt {27} = 5,2\)
Tính thể tích của hình chóp tam giác đều S.ABC, biết diện tích đáy của nó bằng 15,6 cm2, chiều cao bằng 10 cm
Tính thể tích hình chóp tam giác đều A.BCD, biết \(\sqrt {75} = 8,66\)
Một hình chóp tam giác đều có chiều cao h, thể tích V. Diện tích đáy S là:
A. \(S = \frac{h}{V}\)
B. \(S = \frac{V}{h}\)
C. \(S = \frac{{3V}}{h}\)
D. \(S = \frac{{3h}}{V}\)