Đề bài

Bác Lan sử dụng dịch vụ điện thoại di động với giá cước gọi nội mạng, ngoại mạng lần lượt là 1 200 đồng/phút và 2000 đồng/phút. Trong tháng 10, bác Lan đã sử dụng 90 phút gọi nội mạng. Hỏi bác Lan có thể sử dụng nhiều nhất bao nhiêu phút với ngoại mạng nếu tiền cước bác Lan phải trả trong tháng 10 không vượt quá 200.000 đồng.

Phương pháp giải

Ta được bất phương trình: \(108000 + 2000x \le 200000\)

Lời giải của GV Loigiaihay.com

Gọi số phút bác Lan gọi ngoại mạng là \(x(x > 0).\)

Số tiền cước bác Lan đã sử dụng cho 90 phút nội mạng là: \(1200.90 = 108000\) (đồng).

Số tiền cước bác Lan đã sử dụng cho x phút ngoại mạng là: \(2000x\) (đồng).

nếu tiền cước bác Lan phải trả trong tháng 10 không vượt quá 200.000 đồng thì ta có bất phương trình:

            \(\begin{array}{l}108000 + 2000x \le 200000\\108 + 2x \le 200\\2x \le 92\\x \le 46\end{array}\)

Kết hợp với điều kiện, vậy bác Lan có thể sử dụng nhiều nhất 46 phút goi ngoại mạng.

Các bài tập cùng chuyên đề

Bài 1 :

Với giá trị của m thì phương trình $x - 2 = 3m + 4$ có nghiệm lớn hơn 3:

Xem lời giải >>
Bài 2 :

Số nguyên nhỏ nhất thỏa mãn bất phương trình $\dfrac{{x + 4}}{5} - x + 5 < \dfrac{{x + 3}}{3} - \dfrac{{x - 2}}{2}$ là

Xem lời giải >>
Bài 3 :

Bất phương trình $2{(x + 2)^2} < 2x(x + 2) + 4$ có nghiệm là

Xem lời giải >>
Bài 4 :

Kết luận nào sau đây là đúng khi nói về nghiệm của bất phương trình $\;(x + 3)(x + 4) > (x - 2)(x + 9) + 25$.

Xem lời giải >>
Bài 5 :

Tìm $x$  để phân thức \(\dfrac{4}{{9 - 3x}}\) không âm.

Xem lời giải >>
Bài 6 :

Tìm \(x\) để biểu thức sau có giá trị dương $A = \dfrac{{x + 27}}{5} - \dfrac{{3x - 7}}{4}$

Xem lời giải >>
Bài 7 :

Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị âm.

Xem lời giải >>
Bài 8 :

Tìm \(x\) để  $P = \dfrac{{x - 3}}{{x + 1}}$ có giá trị lớn hơn \(1\).

Xem lời giải >>
Bài 9 :

Tìm số nguyên $x$  thỏa mãn cả hai bất phương trình:

\(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} >  - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\)

Xem lời giải >>
Bài 10 :

Với những giá trị nào của $x$  thì giá trị của biểu thức \({(x + 1)^2} - 4\) không lớn hơn giá trị của biểu thức \({(x - 3)^2}\).

Xem lời giải >>
Bài 11 :

Số nguyên lớn nhất thỏa mãn bất phương trình \(\dfrac{{1987 - x}}{{15}} + \dfrac{{1988 - x}}{{16}} + \dfrac{{27 + x}}{{1999}} + \dfrac{{28 + x}}{{2000}} > 4\) là

Xem lời giải >>
Bài 12 :

Hãy chọn câu đúng. Bất phương trình \(2 + 5x \ge  - 1 - x\) có nghiệm là:

Xem lời giải >>
Bài 13 :

Với giá trị của \(m\) thì phương trình \(x - 1 = 3m + 4\) có nghiệm lớn hơn \(2\):

Xem lời giải >>
Bài 14 :

Số nguyên lớn nhất thỏa mãn bất phương trình \(x - \dfrac{{x + 5}}{2} \le \dfrac{{x + 4}}{6} - \dfrac{{x - 2}}{2}\) là:

Xem lời giải >>
Bài 15 :

Bất phương trình \({\left( {x + 2} \right)^2} < x + {x^2} - 3\) có nghiệm là:

Xem lời giải >>
Bài 16 :

Giá trị của \(x\) để phân thức \(\dfrac{{12 - 4x}}{9}\) không âm là:

Xem lời giải >>
Bài 17 :

Giá trị của \(x\) để biểu thức sau có giá trị dương \(A = \dfrac{{ - x + 27}}{2} - \dfrac{{3x + 4}}{4}\) là:

Xem lời giải >>
Bài 18 :

Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị không âm?

Xem lời giải >>
Bài 19 :

Giá trị của \(x\) để biểu thức \(P = \dfrac{{x - 3}}{{x + 1}}\) có giá trị không lớn hơn \(1\).

Xem lời giải >>
Bài 20 :

Số các giá trị nguyên của \(x\) thỏa mãn cả hai bất phương trình: \(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} >  - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\) là:

Xem lời giải >>
Bài 21 :

Với những giá trị nào của \(x\) thì giá trị của biểu thức \({x^2} + 2x + 1\) lớn hơn giá trị của biểu thức \({x^2} - 6x + 13\).

Xem lời giải >>
Bài 22 :

Số nguyên nhỏ nhất thỏa mãn bất phương trình \(\dfrac{{2017 - x}}{{15}} + \dfrac{{2018 - x}}{{16}} + \dfrac{{17 + x}}{{2019}} + \dfrac{{18 + x}}{{2020}} \le 4\) là:

Xem lời giải >>
Bài 23 :

Xét bất phương trình \(5x + 3 < 0.\left( 1 \right)\)

Hãy thực hiện các yêu cầu sau để giải bất phương trình (1):

a) Sử dụng tính chất của bất đẳng thức, cộng vào hai vế của bất phương trình (1) với -3, ta được một bất phương trình, kí hiệu là (2).

b) Sử dụng tính chất của bất đẳng thức, nhân vào hai vế của bất phương trình (2) với \(\frac{1}{5}\) (tức là chia cả hai vế của bất phương trình (2) cho hệ số của x là 5) để tìm nghiệm của bất phương trình.

Xem lời giải >>
Bài 24 :

Giải các bất phương trình:

a) \(6x + 5 < 0;\)

b) \( - 2x - 7 > 0.\)

Xem lời giải >>
Bài 25 :

Giải các bất phương trình sau:

a) \(5x + 7 > 8x - 5;\)

b) \( - 4x + 3 \le 3x - 1.\)

Xem lời giải >>
Bài 26 :

Trong một cuộc thi tuyển dụng việc làm, ban tổ chức quy định mỗi người ứng tuyển phải trả lời 25 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi có sẵn bốn đáp án, trong đó chỉ có một đáp án đúng. Người ứng tuyển chọn đáp án đúng sẽ được cộng thêm 2 điểm, chọn đáp án sai bị trừ đi 1 điểm. Ở vòng sơ tuyển, ban tổ chức tặng cho mỗi người dự thi 5 điểm và theo quy định người ứng tuyển phải trả lời hết 25 câu hỏi; người nào có số điểm từ 25 điểm trở lên mới được dự thi vòng tiếp theo. Hỏi người ứng tuyển phải trả lời chính xác ít nhất bao nhiêu câu hỏi ở vòng sơ tuyển thì mới được vào vòng tiếp theo?

Xem lời giải >>
Bài 27 :

Giải các bất phương trình sau:

a) \(x - 5 \ge 0;\)

b) \(x + 5 \le 0;\)

c) \( - 2x - 6 > 0;\)

d) \(4x - 12 < 0.\)

Xem lời giải >>
Bài 28 :

Giải các bất phương trình sau:

a) \(3x + 2 > 2x + 3;\)

b) \(5x + 4 <  - 3x - 2.\)

Xem lời giải >>
Bài 29 :

Một ngân hàng đang áp dụng lãi suất gửi tiết kiệm kì hạn 1 tháng là 0,4%. Hỏi nếu muốn có số tiền lãi hàng tháng ít nhất là 3 triệu đồng thì số tiền gửi lãi tiết kiệm ít nhất là bao nhiêu (làm tròn đến triệu đồng)?

Xem lời giải >>
Bài 30 :

Một hãng taxi có giá mở cửa là 15 nghìn đồng và giá 12 nghìn đồng cho mỗi kilomet tiếp theo. Hỏi với 200 nghìn đồng thì hành khách có thể di chuyển được tối đa bao nhiêu kilomet (làm tròn đến hàng đơn vị)?

Xem lời giải >>