Giải các bất phương trình:
a) \(\frac{{4x + 9}}{3} + 2 \ge \frac{{2x - 1}}{4}\);
b) \(1 - \frac{x}{2} \le \frac{{x + 5}}{3}\).
Dựa vào: Giải bất phương trình bậc nhất một ẩn:
Xét bất phương trình ax + b > 0 (\(a \ne 0\)).
Cộng hai vế bất phương trình với – b, ta được bất phương trình: ax > - b
Nhân hai vế của bất phương trình nhận được với \(\frac{1}{a}\):
*Nếu a > 0 thì nhận được nghiệm của bất phương trình đã cho là \(x > - \frac{b}{a}\)
*Nếu a < 0 thì nhận được nghiệm của bất phương trình đã cho là \(x < - \frac{b}{a}\)
a) \(\frac{{4x + 9}}{3} + 2 \ge \frac{{2x - 1}}{4}\)
\(\begin{array}{l}4(4x + 9) + 2.3.4 \ge (2x - 1).3\\16x + 36 + 24 \ge 6x - 3\\10x \ge - 63\\x \ge - 6,3\end{array}\)
b) \(1 - \frac{x}{2} \le \frac{{x + 5}}{3}\)
\(\begin{array}{l}6 - 3x \le 2x + 10\\ - 5x \le 4\\x \ge \frac{{ - 4}}{5}\end{array}\)
Các bài tập cùng chuyên đề
Với giá trị của m thì phương trình $x - 2 = 3m + 4$ có nghiệm lớn hơn 3:
Số nguyên nhỏ nhất thỏa mãn bất phương trình $\dfrac{{x + 4}}{5} - x + 5 < \dfrac{{x + 3}}{3} - \dfrac{{x - 2}}{2}$ là
Bất phương trình $2{(x + 2)^2} < 2x(x + 2) + 4$ có nghiệm là
Kết luận nào sau đây là đúng khi nói về nghiệm của bất phương trình $\;(x + 3)(x + 4) > (x - 2)(x + 9) + 25$.
Tìm $x$ để phân thức \(\dfrac{4}{{9 - 3x}}\) không âm.
Tìm \(x\) để biểu thức sau có giá trị dương $A = \dfrac{{x + 27}}{5} - \dfrac{{3x - 7}}{4}$
Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị âm.
Tìm \(x\) để $P = \dfrac{{x - 3}}{{x + 1}}$ có giá trị lớn hơn \(1\).
Tìm số nguyên $x$ thỏa mãn cả hai bất phương trình:
\(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} > - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\)
Với những giá trị nào của $x$ thì giá trị của biểu thức \({(x + 1)^2} - 4\) không lớn hơn giá trị của biểu thức \({(x - 3)^2}\).
Số nguyên lớn nhất thỏa mãn bất phương trình \(\dfrac{{1987 - x}}{{15}} + \dfrac{{1988 - x}}{{16}} + \dfrac{{27 + x}}{{1999}} + \dfrac{{28 + x}}{{2000}} > 4\) là
Hãy chọn câu đúng. Bất phương trình \(2 + 5x \ge - 1 - x\) có nghiệm là:
Với giá trị của \(m\) thì phương trình \(x - 1 = 3m + 4\) có nghiệm lớn hơn \(2\):
Số nguyên lớn nhất thỏa mãn bất phương trình \(x - \dfrac{{x + 5}}{2} \le \dfrac{{x + 4}}{6} - \dfrac{{x - 2}}{2}\) là:
Bất phương trình \({\left( {x + 2} \right)^2} < x + {x^2} - 3\) có nghiệm là:
Giá trị của \(x\) để phân thức \(\dfrac{{12 - 4x}}{9}\) không âm là:
Giá trị của \(x\) để biểu thức sau có giá trị dương \(A = \dfrac{{ - x + 27}}{2} - \dfrac{{3x + 4}}{4}\) là:
Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị không âm?
Giá trị của \(x\) để biểu thức \(P = \dfrac{{x - 3}}{{x + 1}}\) có giá trị không lớn hơn \(1\).
Số các giá trị nguyên của \(x\) thỏa mãn cả hai bất phương trình: \(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} > - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\) là:
Với những giá trị nào của \(x\) thì giá trị của biểu thức \({x^2} + 2x + 1\) lớn hơn giá trị của biểu thức \({x^2} - 6x + 13\).
Số nguyên nhỏ nhất thỏa mãn bất phương trình \(\dfrac{{2017 - x}}{{15}} + \dfrac{{2018 - x}}{{16}} + \dfrac{{17 + x}}{{2019}} + \dfrac{{18 + x}}{{2020}} \le 4\) là:
Xét bất phương trình \(5x + 3 < 0.\left( 1 \right)\)
Hãy thực hiện các yêu cầu sau để giải bất phương trình (1):
a) Sử dụng tính chất của bất đẳng thức, cộng vào hai vế của bất phương trình (1) với -3, ta được một bất phương trình, kí hiệu là (2).
b) Sử dụng tính chất của bất đẳng thức, nhân vào hai vế của bất phương trình (2) với \(\frac{1}{5}\) (tức là chia cả hai vế của bất phương trình (2) cho hệ số của x là 5) để tìm nghiệm của bất phương trình.
Giải các bất phương trình:
a) \(6x + 5 < 0;\)
b) \( - 2x - 7 > 0.\)
Giải các bất phương trình sau:
a) \(5x + 7 > 8x - 5;\)
b) \( - 4x + 3 \le 3x - 1.\)
Trong một cuộc thi tuyển dụng việc làm, ban tổ chức quy định mỗi người ứng tuyển phải trả lời 25 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi có sẵn bốn đáp án, trong đó chỉ có một đáp án đúng. Người ứng tuyển chọn đáp án đúng sẽ được cộng thêm 2 điểm, chọn đáp án sai bị trừ đi 1 điểm. Ở vòng sơ tuyển, ban tổ chức tặng cho mỗi người dự thi 5 điểm và theo quy định người ứng tuyển phải trả lời hết 25 câu hỏi; người nào có số điểm từ 25 điểm trở lên mới được dự thi vòng tiếp theo. Hỏi người ứng tuyển phải trả lời chính xác ít nhất bao nhiêu câu hỏi ở vòng sơ tuyển thì mới được vào vòng tiếp theo?
Giải các bất phương trình sau:
a) \(x - 5 \ge 0;\)
b) \(x + 5 \le 0;\)
c) \( - 2x - 6 > 0;\)
d) \(4x - 12 < 0.\)
Giải các bất phương trình sau:
a) \(3x + 2 > 2x + 3;\)
b) \(5x + 4 < - 3x - 2.\)
Một ngân hàng đang áp dụng lãi suất gửi tiết kiệm kì hạn 1 tháng là 0,4%. Hỏi nếu muốn có số tiền lãi hàng tháng ít nhất là 3 triệu đồng thì số tiền gửi lãi tiết kiệm ít nhất là bao nhiêu (làm tròn đến triệu đồng)?
Một hãng taxi có giá mở cửa là 15 nghìn đồng và giá 12 nghìn đồng cho mỗi kilomet tiếp theo. Hỏi với 200 nghìn đồng thì hành khách có thể di chuyển được tối đa bao nhiêu kilomet (làm tròn đến hàng đơn vị)?