Một đội công nhân cần phải lắp đường ống dẫn nước trên một đoạn phố thẳng dài 65m. Có hai loại ống dài 3m và 5m. Hãy chỉ ra ít nhất hai phương án lắp ống để không cần phải cưa ống ra (coi rằng các mối nối là không đáng kể).
+ Gọi số ống loại 3m và 5m dùng để lắp đường ống dẫn nước trên một đoạn phố lần lượt là x và y (\(x,y \in \mathbb{N}*\)).
+ Từ đầu bài lập được phương trình với hai ẩn x và y.
+ Tìm hai nghiệm của phương trình vừa lập được ở trên, đó là hai phương án để lắp ống.
Gọi số ống loại 3m và 5m dùng để lắp đường ống dẫn nước trên một đoạn phố lần lượt là x và y (\(x,y \in \mathbb{N}*\)).
Vì đường ống dẫn nước cần lắp dài 65m nên ta có phương trình: \(3x + 5y = 65\) (1)
Thay \(x = 5\) vào phương trình (1) ta có: \(3.5 + 5y = 65\) nên \(y = 10\) (thỏa mãn điều kiện).
Thay \(x = 10\) vào phương trình (1) ta có: \(3.10 + 5y = 65\) nên \(y = 7\) (thỏa mãn điều kiện).
Do đó, hai phương án lắp ống để không cần phải cưa ống là: Dùng 5 ống loại 3m và 10 ống loại 5m hoặc dùng 10 ống loại 3m và 7 ống loại 5m.
Các bài tập cùng chuyên đề
Cho phương trình $ax + by = c$ với $a \ne 0,b \ne 0$. Nghiệm của phương trình được biểu diễn bởi
Hãy viết một phương trình bậc nhất hai ẩn và chỉ ra một nghiệm của nó.
a) Tìm giá trị thích hợp thay cho dấu “?” trong bảng sau rồi cho biết 6 nghiệm của phương trình \(2x - y = 1:\)
b) Viết nghiệm tổng quát của phương trình đã cho.
Cho hai phương trình:
\(\begin{array}{l} - 2x + 5y = 7;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\4x - 3y = 7.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array}\)
Trong các cặp số \(\left( {2;0} \right),\left( {1; - 1} \right),\left( { - 1;1} \right),\left( { - 1;6} \right),\left( {4;3} \right)\) và \(\left( { - 2; - 5} \right),\) cặp số nào là:
a) Nghiệm của phương trình (1)
b) Nghiệm của phương trình (2)
c) Nghiệm của phương trình (1) và phương trình (2)?
Trên mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {1;2} \right),B\left( {5;6} \right),C\left( {2;3} \right),D\left( { - 1; - 1} \right).\) Đường thẳng \(4x - 3y = - 1\) đi qua hai điểm nào trong các điểm đã cho?
A. A và B;
B. B và C;
C. C và D;
D. D và A.
Cho phương trình 3x + 2y = 4. (1)
a) Trong 2 cặp số (1;2) và (2;-1), cặp số nào là nghiệm của phương trình(1)?
b) Tìm yo để cặp số (4;yo) là nghiệm của phương trình (1).
c) Tìm thêm 2 nghiệm của phương trình (1).
d) Hãy biểu diễn tất cả các nghiệm của phương trình (1) trên mặt phẳng toạ độ Oxy.
Trong các cặp số (1;1), (-2;5), (0;2), cặp số nào là nghiệm của mỗi phương trình sau?
a) 4x + 3y = 7;
b) 3x – 4y = -1.
Nêu hai nghiệm của phương trình: \(6x - 5y = 11\).
Trong các cặp số \(\left( {8;1} \right),\left( { - 3;6} \right),\left( {4; - 1} \right),\left( {0;2} \right)\) cho biết cặp số nào là nghiệm của mỗi phương trình sau:
a. \(x - 2y = 6\);
b. \(x + y = 3\).
a) Cặp số \(\left( {x_1^{};y_1^{}} \right) = \left( {8;5} \right)\) có thỏa mãn \(50x_1^{} + 20y_1^{} = 500\) không?
b) Tìm một cặp số \(\left( {x_2^{};y_2^{}} \right)\) khác cặp số \(\left( {8;5} \right)\) sao cho \(50x_2^{} + 20y_2^{} = 500\).
c) Tìm một cặp số \(\left( {x_3^{};y_3^{}} \right)\) sao cho \(50x_3^{} + 20y_3^{} \ne 500\).
Tìm bốn nghiệm của phương trình \(3x - 4y = 5\).
Tìm ba nghiệm cho mỗi phương trình bậc nhất hai ẩn sau:
a) \(5x + 7y = 10\);
b) \(11x - 3y = 18\).
Cặp số nào là nghiệm của phương trình bậc nhất hai ẩn \(2x - 5y = 19\).
Để cặp số \(\left( {2; - 1} \right)\) là nghiệm của phương trình \(mx - 5y = 3m - 1\) thì:
Cho \(\left( {2;0} \right)\) và \(\left( { - 1; - 2} \right)\) là hai nghiệm của phương trình \(ax + by = 4\). Hệ số a và b là
Phương trình $x - 5y + 7 = 0$ nhận cặp số nào sau đây làm nghiệm?
Phương trình \(5x + 4y = 8\) nhận cặp số nào sau đây làm nghiệm?
Công thức nghiệm tổng quát của phương trình $0x + 4y = - 16$
Cho đường thẳng $d$ có phương trình $(m - 2)x + (3m - 1)y = 6m - 2$
Tìm các giá trị của tham số m để $d$ song song với trục hoành.
Cho đường thẳng $d$ có phương trình $(5m - 15)x + 2my = m - 2$
Tìm các giá trị của tham số m để $d$ song song với trục hoành.
Cho đường thẳng $d$ có phương trình $(m - 2)x + (3m - 1)y = 6m + 2$
Tìm các giá trị của tham số $m$ để $d$ song song với trục tung.
Cho đường thẳng $d$ có phương trình $\dfrac{{m - 1}}{2}x + \left( {1 - 2m} \right)y = 2$
Tìm các giá trị của tham số m để $d$ song song với trục tung.
Cho đường thẳng $d$ có phương trình $(m - 2)x + (3m - 1)y = 6m - 2$
Tìm các giá trị của tham số $m$ để $d$ đi qua gốc tọa độ.
Cho đường thẳng $d$ có phương trình $(2m - 4)x + (m - 1)y = m - 5$
Tìm các giá trị của tham số m để $d$ đi qua gốc tọa độ.
Nghiệm nguyên âm của phương trình $3x + 4y = - 10$ là \(\left( {x;y} \right).\) Tính \(x.y.\)
Gọi $\left( {x;y} \right)$ là nghiệm nguyên dương nhỏ nhất của phương trình $-4x + 3y = 8$ . Tính $x + y$
Gọi $\left( {x;y} \right)$ là nghiệm nguyên dương nhỏ nhất của phương trình $6x - 7y = 5$ .
Tính $x - y.$
Nghiệm (tổng quát) của phương trình \( - 2x - 3y = 6\) là
A. \(\left( {x;\frac{2}{3}x + 2} \right)\) với \(x \in \mathbb{R}\) tùy ý.
B. \(\left( {\frac{3}{2}y + 3;y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
C. \(\left( {\frac{3}{2}y - 3;y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
D. \(\left( {x;\frac{{ - 2}}{3}x - 2} \right)\) với \(x \in \mathbb{R}\) tùy ý.
a) Tìm giá trị thích hợp thay cho dấu “?” trong bảng sau rồi cho biết 6 nghiệm của phương trình \(2x - y = 1\):
b) Viết nghiệm tổng quát của phương trình đã cho.
Cho hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}3x + 2y = 1\\x - 3y = - 7\end{array} \right.\). Chứng tỏ rằng hệ phương trình đã cho có một nghiệm là \(\left( { - 1;2} \right)\).