Cho số thực t và M là điểm biểu diễn của góc lượng giác có số đo t rad trên đường tròn lượng giác. Sử dụng định nghĩa của các giá trị lượng giác, hãy giải thích vì sao xác định duy nhất:
a) Giá trị sint và cost
b) Giá trị tant (nếu \(t \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)) và \(\cot t\)(nếu \(t \ne k\pi ,k \in \mathbb{Z}\)).
Quan sát hình vẽ để trả lời.
a) Ta thấy \(\sin t = {y_M}\) là tung độ của điểm M trên đường tròn lượng giác và c\(\cos t = {x_M}\) là hoành độ của điểm M trên đường tròn lượng giác.
Với mỗi điểm M xác định, ta chỉ có 1 tung độ và hoành độ duy nhất
Nên ta chỉ xác định duy nhất giá trị sint và cost.
b,
Nếu \(t \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\), ta có: \(\tan t = \frac{{\sin t}}{{{\rm{cost}}}} = \frac{{{y_M}}}{{{x_M}}}\)( \({x_M} \ne 0\))
Nếu \(t \ne k\pi ,k \in \mathbb{Z}\), ta có: \(\cot t = \frac{{{\rm{cost}}}}{{{\rm{sint}}}} = \frac{{{x_M}}}{{{y_M}}}\)( \({y_M} \ne 0\))
Do \({x_M}\), \({y_M}\)xác định duy nhất nên \(\tan t\), \(\cot t\)xác định duy nhất.
Các bài tập cùng chuyên đề
Tìm tập xác định của hàm số \(y = \frac{1}{{\sin x}}\)
Hoàn thành bảng sau:
\(x\) |
\(\sin x\) |
\(\cos x\) |
\(\tan x\) |
\(\cot x\) |
\(\frac{\pi }{6}\) |
? |
? |
? |
? |
0 |
? |
? |
? |
? |
\( - \frac{\pi }{2}\) |
? |
? |
? |
? |
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} .\)
Tìm tập giá trị của các hàm số sau:
a) \(y = 2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) \(y = \sqrt {1 + \cos x} - 2\);
Tìm tập xác định của các hàm số sau:
\(\begin{array}{l}a)\;y = \frac{1}{{cosx}}\\b)\;y = tan(x + \frac{\pi }{4})\\c)\;y = \frac{1}{{2 - si{n^2}x}}\end{array}\)
Tìm tập xác định của hàm số sau:
a) \(y = \cot 3x\);
b) \(y = \sqrt {1 - \cos 4x} \);
c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);
d) \(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \).
Tìm tập xác định của các hàm số sau:
a) \(y = \cos \frac{{2x}}{{x - 1}}\);
b) \(y = \frac{1}{{\cos x - \cos 3x}}\);
c) \(y = \frac{1}{{\cos x + \sin 2x}}\);
d) \(y = \tan x + \cot x\).
Tập xác định của hàm số \(y = \tan x + \frac{1}{{1 + {{\cot }^2}x}}\) là:
A. \(\mathbb{R} \setminus \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\)
B. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)
C. \(\mathbb{R} \setminus \left\{ {\frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k2\pi |k \in \mathbb{Z}} \right\}\)
Tập xác định của hàm số \(y = \frac{{1 - \sin x}}{{\cos x}}\) là:
A. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\)
B. \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\)
C. \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R} \setminus \left\{ {k\pi |k \in \mathbb{Z}} \right\}\)
Tập xác định của hàm số \(y = \sqrt {\frac{{1 - \cos x}}{{1 + \sin x}}} \) là:
A. \(\mathbb{R}\)
B. \(\emptyset \)
C. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\)
Tập xác định của hàm số \(y = \sqrt {1 - \cos x} \) là
A. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\).
B. \(\mathbb{R}\backslash \left\{ {k\pi |k \in \mathbb{Z}} \right\}\).
C. \(\mathbb{R}\backslash \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).
D. \(\mathbb{R}\).
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {1 + \sin 3x} \)
b) \(y = \frac{{\sin 2x}}{{\sqrt {1 - \cos x} }}\)
c) \(y = \frac{{\sqrt {1 + \cos 2x} }}{{\sin x}}\)
d) \(y = \frac{1}{{\sin x + \cos x}}\)
e) \(y = \frac{1}{{1 + \sin x\cos x}}\)
g) \(y = \sqrt {\cos x - 1} \)
Tìm tập xác định của các hàm số sau:
a) \(y = - \frac{2}{{\sin 3x}}\);
b) \(y = \tan \left( {\frac{x}{2} - \frac{\pi }{6}} \right)\);
c) \(y = \cot \left( {2x - \frac{\pi }{4}} \right)\);
d) \(y = \frac{1}{{3 - {{\cos }^2}x}}\).
Hàm số nào sau đây có tập xác định \(\mathbb{R}\)?
Tập giá trị của hàm số \(y = \sin x\) là