Tìm \(\mathop {lim}\limits_{n \to + \infty } \frac{{\sqrt {2{n^2} + 1} }}{{n + 1}}\).
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.
\(\frac{{\sqrt {2{n^2} + 1} }}{{n + 1}}\; = \frac{{\sqrt {2 + \frac{1}{{{n^2}}}} }}{{1 + \frac{1}{n}}}\; = \frac{{\left( {\sqrt {2 + \frac{1}{{{n^2}}}} } \right)\;}}{{\left( {1 + \frac{1}{n}} \right)\;}} = \frac{{\sqrt 2 }}{1} = \sqrt 2 \).
Các bài tập cùng chuyên đề
Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) với \({u_n} = 2 + \frac{1}{n},\;\;\;{v_n} = 3 - \frac{2}{n}\)
Tính và so sánh: \(\mathop {lim}\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right)\) và \(\mathop {lim}\limits_{n \to + \infty } {u_n} + \mathop {lim}\limits_{n \to + \infty } {v_n}\)
Tìm các giới hạn sau:
a) \(\mathop {lim}\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\);
b) \(\mathop {lim}\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\)
Cho hai dãy số không âm \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) với \(\mathop {lim}\limits_{n \to + \infty } {u_n} = 2\) và \(\mathop {lim}\limits_{n \to + \infty } {v_n} = 3\). Tìm các giới hạn sau:
a) \(\mathop {lim}\limits_{n \to + \infty } \frac{{u_n^2}}{{{v_n} - {u_n}}};\;\)
b) \(\mathop {lim}\limits_{n \to + \infty } \sqrt {{u_n} + 2{v_n}} \)
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \)
B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\)
C. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \)
D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\)
Cho \({u_n} = \frac{{2 + {2^2} + \ldots + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số \(\left( {{u_n}} \right)\) bằng
A. 1
B. 2
C. -1
D. 0
Cho dãy số \(\left( {{u_n}} \right)\) có tính chất \(\left| {{u_n} - 1} \right| < \frac{2}{n}\). Có kết luận gì về giới hạn của dãy số này?
Tìm giới hạn của các dãy số sau:
a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\);
b) \({v_n} = \mathop \sum \limits_{k = 0}^n \frac{{{3^k} + {5^k}}}{{{6^k}}}\);
c) \({w_n} = \frac{{\sin n}}{{4n}}\)
Tính các giới hạn sau:
a) \(\lim \frac{{8{n^2} + n}}{{{n^2}}};\)
b) \(\lim \frac{{\sqrt {4 + {n^2}} }}{n}.\)
Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 8 + \frac{1}{n};{v_n} = 4 - \frac{2}{n}.\)
a) Tính \(\lim {u_n},\lim {v_n}.\)
b) Tính \(\lim \left( {{u_n} + {v_n}} \right)\) và so sánh giá trị đó với tổng \(\lim {u_n} + \lim {v_n}.\)
c) Tính \(\lim \left( {{u_n}.{v_n}} \right)\) và so sánh giá trị đó với tích \(\left( {\lim {u_n}} \right).\left( {\lim {v_n}} \right).\)
Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 3 + \frac{1}{n};{v_n} = 5 - \frac{2}{{{n^2}}}.\) Tính các giới hạn sau:
a) \(\lim {u_n},\lim {v_n}.\)
b) \(\lim \left( {{u_n} + {v_n}} \right),\lim \left( {{u_n} - {v_n}} \right),\lim \left( {{u_n}.{v_n}} \right),\lim \frac{{{u_n}}}{{{v_n}}}.\)
Tìm các giới hạn sau:
a) \(\lim \frac{{2{n^2} + 3n}}{{{n^2} + 1}}\)
b) \(\lim \frac{{\sqrt {4{n^2} + 3} }}{n}\)
Ở trên ta đã biết \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right) = \lim \frac{{3{n^2} + 1}}{{{n^2}}} = 3\).
a) Tìm các giới hạn \(\lim 3\) và \(\lim \frac{1}{{{n^2}}}\).
b) Từ đó, nêu nhận xét về \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right)\) và \(\lim 3 + \lim \frac{1}{{{n^2}}}\).
Cho các dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) thỏa mãn \(\lim {u_n} = 2,\lim \left( {{u_n} - {v_n}} \right) = 4\). Tìm \(\lim \frac{{3{u_n} - {v_n}}}{{{u_n}{v_n} + 3}}\).
Cho \(\lim {u_n} = a\), \(\lim {v_n} = b\). Phát biểu nào sau đây là SAI?
A. \(\lim \left( {{u_n} + {v_n}} \right) = a + b\)
B. \(\lim \left( {{u_n} - {v_n}} \right) = a - b\)
C. \(\lim \left( {{u_n}.{v_n}} \right) = a.b\)
D. \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{a - b}}{b}\)
Phát biểu nào sau đây là đúng?
A. Nếu \(\lim {u_n} = a\) thì \(\lim \sqrt {{u_n}} = \sqrt a \).
B. Nếu \(\lim {u_n} = a\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \).
C. Nếu \(\lim {u_n} = a\) thì \(a \ge 0\).
D. Nếu \({u_n} \ge 0\) với mọi \(n\) và \(\lim {u_n} = a\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \).
Cho hai dãy số \(\left( {{u_n}} \right)\), \(\left( {{v_n}} \right)\) với \({u_n} = 1 - \frac{2}{n}\), \({v_n} = 4 + \frac{2}{{n + 2}}\).
Khi đó, \(\lim \left( {{u_n} + \sqrt {{v_n}} } \right)\) bằng:
A. 3
B. 4
C. 5
D. 2
Cho \(\lim {u_n} = 3\), \(\lim {v_n} = + \infty \). Khi đó, \(\lim \frac{{{v_n}}}{{{u_n}}}\) bằng:
A. \(3\)
B. \( - \infty \)
C. \( + \infty \)
D. \(0\)
Cho \(\lim {u_n} = 2\), \(\lim {v_n} = 3\). Khi đó, \(\lim \left( {{u_n} + {v_n}} \right)\) bằng:
A. 6
B. 5
C. 1
D. 2
Cho hai dãy số \(\left( {{u_n}} \right)\)và \(\left( {{v_n}} \right)\) thỏa mãn \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\) và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = b \in \mathbb{R}\). Xét các khẳng định sau:
(1) \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right) = 1 + b\)
(2) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_n}}}{{{v_n}}} = b\)
(3) \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right) = b\)
(4) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_n}}}{{{v_n}}} = \frac{1}{b}\).
Số khẳng định đúng là:
A. 2
B. 1
C. 3
D. 4
Cho hai dãy $\left( {{u_n}} \right)$ và $\left( {{v_n}} \right)$ thỏa mãn $\mathop {\lim }\limits_{n \to + \infty } {u_n} = \frac{1}{2}$ và $\mathop {\lim }\limits_{n \to + \infty } {v_n} = - 2.$ Giá trị của $\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n}.{v_n}} \right)$ bằnga
Cho hai dãy \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) có \({u_n} = \frac{1}{{n + 1}}\) và \({v_n} = \frac{2}{{n + 2}}\). Khi đó \(\lim \frac{{{v_n}}}{{{u_n}}}\) có giá trị bằng
Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\lim \left( {4 + {u_n}} \right) = 3\). Giá trị của \(\lim \left( {{u_n}} \right)\) bằng