Cho bốn phân số: \(\dfrac{17}{80}; \dfrac{611}{125}; \dfrac{133}{91}; \dfrac{9}{8}\)
a) Phân số nào trong những phân số trên không viết được dưới dạng số thập phân hữu hạn?
b) Cho biết \(\sqrt{2}=1,414213563...\), hãy so sánh phân số tìm được trong câu a) với \(\sqrt{2}\)
a) Cách 1: Viết các phân số dưới dạng số thập phân rồi nhận biết số thập phân hữu hạn.
Cách 2: Sử dụng nhận xét ở phần Em có biết trang 28: Nếu một phân số tối giản có mẫu dương mà mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn.
b) Viết phân số đó dưới dạng số thập phân rồi so sánh.
a)
Cách 1:
\(\dfrac{17}{80}=0,2125; \dfrac{611}{125}=4,888; \dfrac{133}{91}=1,(461538); \dfrac{9}{8}=1,125\)
Như vậy, trong những phân số trên, phân số không viết được dưới dạng số thập phân hữu hạn là: \(\dfrac{133}{91}\)
Cách 2: Vì các phân số trên đều tối giản và có mẫu dương
Ta có: \(80=2^4.5; 125=5^3; 91=7.13; 8=2^3\) nên chỉ có 91 có ước nguyên tố khác 2,5 nên \(\dfrac{133}{91}\) không viết được dưới dạng số thập phân hữu hạn
b) Ta có: \(\dfrac{133}{91} = 1,(461538) = 1,461538461538…..\)
Quan sát các chữ số ở các hàng tương ứng từ trái sang phải, vì 1= 1; 4 = 4; 1 < 6 nên 1,414213562...< 1,461538461538…..
Vậy \(\dfrac{133}{91}>\sqrt{2}\)
Các bài tập cùng chuyên đề
Trong các số thập phân sau, số nào là số thập phân hữu hạn? Số nào là số thập phân vô hạn tuần hoàn?
\(0,1; - 1,(23);11,2(3); - 6,725\)
Chọn đáp án sai
Trong các phân số:\(\dfrac{{13}}{{15}};\dfrac{{13}}{4};\dfrac{{ - 1}}{{18}};\dfrac{{11}}{6};\dfrac{7}{{20}};\dfrac{{ - 19}}{{50}}\), gọi A là tập hợp các phân số viết được thành số thập phân hữu hạn và B là tập hợp các phân số viết được thành số thập phân vô hạn tuần hoàn. Liệt kê và viết các phần tử của hai tập hợp đó theo thứ tự từ nhỏ đến lớn.
Nam vẽ một phần trục số trên vở ô li và đánh dấu ba điểm A, B,C như sau:
a) Hãy cho biết hai điểm A, B biểu diễn những số thập phân nào?
b) Làm tròn số thập phân được biểu diễn bởi điểm C với độ chính xác 0,05.
Viết mỗi số sau dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn:
\(\dfrac{1}{3};{\rm{ }}\dfrac{{17}}{6};{\rm{ }}\dfrac{3}{4};{\rm{ }}\dfrac{{ - 14}}{{11}};{\rm{ }}\dfrac{{ - {\rm{ }}4}}{{55}}\).
Cho các số sau \(\frac{4}{6} = 0,66...6;\,\frac{3}{4} = 0,75;\,\frac{{20}}{{15}} = 1,333...3;\,\frac{5}{4} = 1,25\) số nào viết được dưới dạng số thập phân hữu hạn?