Làm thế nào để nhân, chia các phân thức đại số?
Áp dụng như các quy tắc nhân chia các phân số.
Để nhân, chia được các phân thức đại số ta thực hiện như nhân chia các phân số.
Các bài tập cùng chuyên đề
Tính:
a) \(\dfrac{{4{x^2} + 2}}{{x - 2}} \cdot \dfrac{{3x + 2}}{{x - 4}} \cdot \dfrac{{4 - 2x}}{{2{x^2} + 1}}\)
b) \(\dfrac{{x + 3}}{x} \cdot \dfrac{{x + 2}}{{{x^2} + 6x + 9}}:\dfrac{{{x^2} - 4}}{{{x^2} + 3x}}\)
Thực hiện các phép tính sau:
a) \(\frac{{15{a^2}}}{{8bc}}.\frac{{4c}}{{5a{b^2}}}\)
b) \(\frac{{14{x^3}}}{{5y{z^3}}}:\frac{{7x}}{{15y{z^2}}}\)
c) \(\frac{{6t + 12}}{{10 - 5t}}.\frac{{t - 2}}{{t + 2}}\)
d) \(\frac{{m - 5}}{{{m^2} + 1}}:\left( {3m - 15} \right)\)
Thực hiện các phép tính sau:
a) \(\frac{{5a}}{{9b}}.\frac{{2a{c^2}}}{b}:\frac{{{c^3}}}{{8{b^3}}}\)
b) \(\frac{{{x^2} - 2xy}}{{x - y}}.\frac{{y - x}}{{3x - {x^2}}}:\frac{1}{{3 - x}}\)
c) \(\left( {\frac{{3x}}{{x + 1}} + 1} \right):\left( {1 - \frac{{15{x^2}}}{{1 - {x^2}}}} \right)\)
d) \(\left( {{m^2} - 1} \right).\left( {\frac{1}{{m + 1}} - \frac{1}{{m - 1}} + 1} \right)\)
Thực hiện các phép tính sau:
a) \(\frac{{{y^2} - 4y + 4}}{{3 - 9y}}.\frac{{3y - 1}}{{3{y^2} - 12}}\)
b) \(\frac{{{c^2} - {d^2}}}{{cd}}:\frac{1}{{cd + {d^2}}}\)
Rút gọn các biểu thức sau:
a) \(\left( {b - \frac{{{a^2} + {b^2}}}{{a + b}}} \right).\left( {\frac{{2b}}{a} - \frac{{4b}}{{a - b}}} \right)\)
b) \(\left( {\frac{{{x^2}}}{{{y^2}}} + \frac{y}{x}} \right):\left( {\frac{x}{{{y^2}}} - \frac{1}{y} + \frac{1}{x}} \right)\)
Thu gọn các biểu thức sau:
a) \(\frac{{16 - {a^2}}}{{{a^2} + 8a + 16}}:\frac{{a - 4}}{{2a + 4}}.\frac{{a + 4}}{{a + 2}}\);
b) \(\frac{{{a^2} - ab + {b^2}}}{{{b^2} - {a^2}}}.\frac{{a + b}}{{{a^3} + {b^3}}}:\frac{{a + b}}{{a - b}}\);
c) \(\left( {\frac{{2a}}{{a - 2}} - \frac{a}{{a + 2}}} \right).\frac{{{a^2} - 4}}{a}\);
d) \(\left( {\frac{1}{{{a^2}}} - \frac{1}{{ab}}} \right).\frac{{a{b^2}}}{{a - b}}\).
Tính:
a) \(\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\);
b) \(\left( {\frac{x}{{x + 1}} + 1} \right):\left( {1 - \frac{{3{x^2}}}{{1 - {x^2}}}} \right)\).
Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:
a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\)
b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\)
c) \(P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\)
Trên một mảnh đất có dạng hình chữ nhật với chiều dài là \(x\left( m \right)\), chiều rộng là \(y\left( m \right)\) với \(x > y > 4\), bác An dự định làm một vườn hoa hình chữ nhật và bớt ra một phần đường đi rộng 2 m như Hình 3. Viết phân thức biểu thị theo \(x;y\).
a) Tỉ số diện tích của mảnh đất và vườn hoa.
b) Tỉ số chu vi mảnh đất và vườn hoa.
Tìm hai phân thức P, Q thoản mãn:
\(a)P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\)
\(b)Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\)
Cho hai phân thức \(P = \frac{{{x^2} + 6{\rm{x}} + 9}}{{{x^2} + 3{\rm{x}}}}\) và \(Q = \frac{{{x^2} + 3{\rm{x}}}}{{{x^2} - 9}}\)
a) Rút gọn P và Q
b) Sử dụng kết quả câu a, Tính P.Q và P:Q
Thực hiện phép tính:
\(\begin{array}{l}a)\frac{{4{\rm{x}} - 6}}{{5{{\rm{x}}^2} - x}}.\frac{{25{{\rm{x}}^2} - 10{\rm{x}} + 1}}{{27 + 8{{\rm{x}}^3}}}\\b)\frac{{2{\rm{x}} + 10}}{{{{\left( {x - 3} \right)}^2}}}:\frac{{{{\left( {x + 5} \right)}^3}}}{{{x^2} - 9}}\end{array}\)