Đề bài

a) Tính tích: \(3{{\rm{x}}^2}.8{{\rm{x}}^4}\)

b) Nêu quy tắc nhân hai đơn thức cùng một biến

Phương pháp giải

Ta nhân các hệ số với nhau và nhân các phần biến với nhau.

Lời giải của GV Loigiaihay.com

a) \(3{{\rm{x}}^2}.8{{\rm{x}}^4} = \left( {3.8} \right).\left( {{x^2}.{x^4}} \right) = 24{{\rm{x}}^6}\)

b) Quy tắc nhân hai đơn thức cùng một biến: ta nhân các hệ số với nhau và nhân các phần biến với nhau.

Các bài tập cùng chuyên đề

Bài 1 :

Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức
A. \(4{x^2}{y^3}{z^3}\)
B. \( - 12{x^2}{y^3}{z^3}\)
C. \( - 12{x^3}{y^3}{z^3}\)
D. \(4{x^3}{y^3}{z^3}\).

Xem lời giải >>
Bài 2 :

Hình hộp chữ nhật \(A\) có chiều rộng \(2x\), chiều dài và chiều cao đề gấp \(k\) lần chiều rộng (Hình 2).

 

a) Tính diện tích đáy của \(A\).

b) Tính thể tích của \(A\).

Xem lời giải >>
Bài 3 :

Tính tích của hai đơn thức: \({x^3}{y^7}\) và \( - 2{{\rm{x}}^5}{y^3}\).

Xem lời giải >>
Bài 4 :

Tính tích: \(\left( { - \dfrac{1}{2}xy} \right).\left( {8{{\rm{x}}^2} - 5{\rm{x}}y + 2{y^2}} \right)\).

Xem lời giải >>
Bài 5 :

Tính tích: \(9{{\rm{x}}^5}{y^4}.2{{\rm{x}}^4}{y^2}\).

Xem lời giải >>
Bài 6 :

Tìm tích của các đơn thức sau rồi tìm bậc của đơn thức thu được:

a) \(\frac{2}{{15}}{x^4}{y^2}\) và \(\frac{5}{3}{x^2}{y^4}\);

b) \(\frac{1}{4}x{y^2}z\) và \( - 24xy{z^2}\)

Xem lời giải >>
Bài 7 :

Thực hiện các phép nhân sau:

a) \(\left( {\frac{1}{3}{x^4}} \right).\left( { - 9x{y^2}z} \right);\)

b)\(\left( {2{x^2}y{z^3}t} \right).\left( {5{x^3}{y^3}{z^4}} \right)\)

Xem lời giải >>
Bài 8 :

Dựa theo cách làm như trong câu a và câu b của Hoạt động 2, hãy thu gọn tích

\(\left( {3x{y^2}} \right).\left( {5{x^2}{y^3}} \right)\)

Xem lời giải >>
Bài 9 :

Tính tích của các đơn thức sau rồi xác định hệ số, phần biến và bậc của đơn thức thu được:

a)     \(\frac{1}{7}{x^5}{y^3}\) và \(\frac{{35}}{9}{x^4}{y^2}\)

b)    \(\frac{3}{5}{x^2}{y^2}z\) và \( - 25{x^2}y{z^2}\)

Xem lời giải >>
Bài 10 :

Tìm ba số tự nhiên liên tiếp, biết tích của hai số sau lớn hơn tích của hai số trước là 12 đơn vị.

Xem lời giải >>
Bài 11 :

Thực hiện các phép nhân:

a) \(\left( {3ab} \right).\left( {5bc} \right)\);

b) \(\left( { - 6{a^2}b} \right).\left( { - \frac{1}{2}a{b^3}} \right)\).

Xem lời giải >>
Bài 12 :

Khi thu gọn đơn thức \(3x{y^5}\left( { - \frac{2}{3}{x^3}{y^2}z} \right)\), ta được đơn thức

A. \(2{x^2}{y^3}z\)       

B. \( - 2{x^4}{y^7}z\)       

C. \( - 2{x^3}{y^6}z\)    

D. \( - \frac{2}{9}{x^4}{y^7}z\)

Xem lời giải >>
Bài 13 :

Thực hiện phép tính:

a) \({x^3}\left( { - \frac{5}{4}{x^2}y} \right).\left( {\frac{2}{5}{x^3}{y^4}} \right)\)

b) \(\left( { - \frac{3}{4}{x^5}{y^4}} \right)\left( {x{y^2}} \right)\left( { - \frac{8}{9}{x^2}{y^5}} \right)\)

Xem lời giải >>
Bài 14 :

Tích của hai đơn thức \(\sqrt 2 {x^3}{y^2}\) và \( - \sqrt 2 x{y^3}z\) là đơn thức

A. \( - 2{x^4}{y^5}\).

B. \(2{x^4}{y^5}z\).

C. \( - 2{x^4}{y^4}z\).

D. \( - 2{x^4}{y^5}z\).

Xem lời giải >>
Bài 15 :

Nhân hai đơn thức:

a) \(5{x^2}y\)\(2x{y^2}\).

b) \(\frac{3}{4}xy\) và \(8{x^3}{y^2}\).

c) \(1,5x{y^2}{z^3}\) và \(2{x^3}{y^2}z\).

Xem lời giải >>
Bài 16 :

Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức:

A. \(4{x^2}{y^3}{z^3}\).

B. \( - 12{x^2}{y^3}{z^3}\).

C. \( - 12{x^3}{y^3}{z^3}\).

D. \(4{x^3}{y^3}{z^3}\).

Xem lời giải >>
Bài 17 :

Nhân hai đơn thức \(5{x^4}{y^2}z\) và \(\frac{{ - 1}}{5}{x^3}y{z^2}\) ta được kết quả là

Xem lời giải >>
Bài 18 :

Tích của hai đơn thức \(\frac{1}{2}x{y^3}\) và \(x\left( { - 8y} \right)x{z^2}\) có phần hệ số là

Xem lời giải >>