Cho tam giác \(ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Biết \(AB = 8\)cm; \(AC = 15\)cm. Độ dài đoạn \(AM\) là:
A. 8,5cm
B. 8cm
C. 7cm
D. 7,5cm
Áp dụng ĐL Pythagore rồi tính độ dài cạnh \(BC\); \(AM\)
Áp dụng định lí Pythagpre vào \(\Delta ABC\) vuông tại \(A\) ta có:
\(B{C^2} = A{B^2} + A{C^2} = {8^2} + {15^2} = 64 + 225 = 289 = {17^2}\)
\(BC = 17\) cm
Xét \(\Delta ABC\) có \(AM\) là trung tuyến nên bằng nửa cạnh huyền \(BC\)
Suy ra \(AM = \frac{1}{2}BC = \frac{1}{2}.17 = 8.5\) cm
Các bài tập cùng chuyên đề
Cho Hình 14. Tìm \(x\).
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N lần lượt là hình chiếu của O trên AB, BC. Chứng minh: \(MN = \dfrac{1}{2}AC\)
Cho tam giác ABC có D là trung điểm cạnh AC. Biết \(AD = BD = CD = 5cm\) và \(BC = 6cm,\) tính độ dài cạnh AB.
1. Sử dụng tính chất tổng các góc của một tam giác bằng \({180^0}\) để chứng minh:
a) Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
b) Tam giác ABC có đường trung tuyến AM bằng nửa BC thì tam giác vuông tại A.
2. Sử dụng tính chất hai đường chéo của hình chữ nhật bằng nhau để chứng minh a), b) của ý 1.