Thực hiện các phép nhân đơn thức sau:
a) (4x3).(−6x3y)(4x3).(−6x3y)
b) (−2y).(−5xy2)(−2y).(−5xy2)
c) (−2a)3.(2ab)2(−2a)3.(2ab)2
Để nhân hai đơn thức, ta nhân các hệ số với nhau, nhân các lũy thừa cùng biến, rồi nhân các kết quả đó với nhau.
a) (4x3).(−6x3y)=[4.(−6)].(x3.x3).y=−24x6y(4x3).(−6x3y)=[4.(−6)].(x3.x3).y=−24x6y
b) (−2y).(−5xy2)=[(−2).(−5)].x.(y.y2)=10xy3(−2y).(−5xy2)=[(−2).(−5)].x.(y.y2)=10xy3
c) (−2a)3.(2ab)2=−8a3.4a2b2=[(−8).4].(a3.a2).b2=−32a5b2(−2a)3.(2ab)2=−8a3.4a2b2=[(−8).4].(a3.a2).b2=−32a5b2
Các bài tập cùng chuyên đề
Nhân hai đơn thức:
a) 3x23x2 và 2x32x3
b) −xy−xy và 4z34z3
c) 6xy36xy3 và −0,5x2−0,5x2
Hãy nhớ lại quy tắc nhân đơn thức với đa thức trong trường hợp chúng có một biến bằng cách thực hiện phép nhân (5x2).(3x2−x−4)(5x2).(3x2−x−4)
Bằng cách tương tự, hãy làm phép nhân (5x2y).(3x2y−xy−4y)(5x2y).(3x2y−xy−4y).
Làm tính nhân:
a) (xy).(x2+xy−y2)(xy).(x2+xy−y2);
b) (xy+yz+zx).(−xyz)(xy+yz+zx).(−xyz).
Rút gọn biểu thức: x3(x+y)−x(x3+y3)x3(x+y)−x(x3+y3).
Nhân hai đơn thức:
a) 5x2y5x2y và 2xy22xy2;
b) 34xy34xy và 8x3y2;
c) 1,5xy2z3 và 2x3y2z.
Tìm tích của đơn thức với đa thức:
a) (−0,5)xy2(2xy−x2+4y)
b) (x3y−12x2+13xy)6xy3
Rút gọn biểu thức: x(x2−y)−x2(x+y)+xy(x−1).
Rút gọn biểu thức sau để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: (x−5)(2x+3)−2x(x−3)+x+7.
Cho biểu thức P=5x(3x2y−2xy2+1)−3xy(5x2−3xy)+x2y2
a) Bằng cách thu gọn, chứng tỏ rằng giá trị của biểu thức P chỉ phụ thuộc vào biến x mà không phụ thuộc vào biến y.
b) Tìm giá trị của x sao cho P=10.
a) Hình 3a là bản vẽ sơ lược sàn của một căn hộ (các kích thước tính theo m). Tính diện tích sàn này bằng những cách khác nhau.
b) Nếu vẽ cả ban công thì được sơ đồ như Hình 3b. Hãy tính tổng diện tích của sàn bao gồm cả ban công.
Thực hiện các phép nhân:
a) 3x(2xy−5x2y)
b) 2x2y(xy−4xy2+7y)
c) (−23xy2+6yz2).(−12xy)
a) Tính tích: (11x3).(x2−x+1)
b) Nêu quy tắc nhân đơn thức với đa thức trong trường hợp một biến
Tính tích: (3xy)(x+y)
Thực hiện phép nhân: 2x(3x2−4x+1)
Thực hiện phép nhân, thu gọn rồi tính giá trị của biểu thức sau tại x=−5 và y=6:
E=x(x+y)−y(x−y)
Thực hiện phép nhân và thu gọn biểu thức E=x(y2−x)−xy(x+y)+x2(y+1)
Thực hiện phép nhân:
a) 0,5x2y(4x2−6xy+y2);
b) (3x3−6x2y+9xy2)(−23xy2).
Rút gọn rồi tính giá trị của biểu thức.
a) A=x(x−y+1)+y(x+y−1) tại x=3;y=3
b) B=x(x−y2)+y(x2−y)−(x+y)(x−y) tại x=2;y=−0,5.
Tích của đơn thức −0,5x2y với đa thức 2x2y−6xy2+3x−2y+4 là đa thức:
A. −x4y2+3x3y3−1,5x3y+x2y2−2x2y.
B. −x4y2+3x3y3−1,5x3y+x2y2+2x2y.
C. −x4y2+3x3y3−1,5x3y+xy3−2x2y.
D. −x4y2+3x3y3−2,5x3y+x2y2−2x2y.
Tại x = 1 và y = -2, biểu thức 2x2(x−3y)−2x3 có giá trị là:
A. 6.
B. -4.
C. 12.
D. -8.
Tìm tích của đơn thức với đa thức:
a) (−0,5)xy2(2xy−x2+4y).
b) (x3y−12x2+13xy)6xy3.
Rút gọn biểu thức: x(x2−y)−x2(x+y)+xy(x−1).
Cho biểu thức P=5x(3x2y−2xy2+1)−3xy(5x2−3xy)+x2y2.
a) Bằng cách thu gọn, chứng tỏ rằng giá trị của biểu thức P chỉ phụ thuộc vào biến x mà không phụ thuộc vào biến y.
b) Tìm giá trị của x sao cho P = 10.
Kết quả của tích 4a3b(3ab−b+14) bằng
Tích của đa thức 6xy và đa thức 2x2−3y là đa thức
Rút gọn biểu thức A=2x2(y3−x3)−y3(2x2−y), ta được kết quả là:
Kết quả của phép nhân 2x5.(3x−2x2) là: