Cho đường tròn (I) nội tiếp tam giác ABC và lần lượt tiếp xúc với các cạnh BC, CA, AB tại M, N, P. Chứng minh \(\widehat {AIN} = \widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)
Bước 1: Lý thuyết: Góc ở tâm bằng số đo cung bị chắn, góc nội tiếp bằng một nửa số đo cung bị chắn, suy ra \(\widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)
Bước 2: Sử dụng tính chất 2 tiếp tuyến cắt nhau để suy ra \(\widehat {AIN} = \frac{1}{2}\widehat {PIN.}\)
Xét (I) có:
\(\widehat {PIN}\) là góc ở tâm chắc cung NP nên \(\widehat {PIN}\)= sđ\(\overset\frown{NP}\).
\(\widehat {PMN}\) là góc nội tiếp chắc cung NP nên \(\widehat {PMN}\) = \(\frac{1}{2}\)sđ\(\overset\frown{NP}\).
Suy ra \(\widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)(1)
Ta lại có: \(IN \bot AC,IP \bot AB\) nên AB, AC là 2 tiếp tuyến của (I) nên IA là tia phân giác của góc PIN, hay \(\widehat {AIN} = \frac{1}{2}\widehat {PIN.}\)(2)
Từ (1) và (2) ta có \(\widehat {AIN} = \widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)
Các bài tập cùng chuyên đề
Cho đường tròn (I) nội tiếp tam giác ABC với các tiếp điểm trên các cạnh AB, AC lần lượt là E, F. Chứng minh rằng \(\widehat {EIF} + \widehat {BAC} = {180^o}\)
Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng \(\widehat {BOC} = {120^o}\) và \(\widehat {OCA} = {20^o}\). Tính số đo các góc của tam giác ABC.
Cho ABC là tam giác đều có cạnh bằng 4cm. Tính bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC.
Người ta vẽ bản quy hoạch của một khu định cư được bao xung quanh bởi ba con đường thẳng lập thành một tam giác với độ dài các cạnh là 900m, 1 200m và 1 500m (H.9.27).
a) Tính chu vi và diện tích của phần đất giới hạn bởi tam giác trên.
b) Họ muốn xây dựng một khách sạn bên trong khu dân cư cách đều cả ba con đường đó. Hỏi khi đó khách sạn sẽ cách mỗi con đường một khoảng là bao nhiêu?
Cho hình vuông ABCD có cạnh bằng 4cm. Tính chu vi, diện tích của các đường tròn nội tiếp và ngoại tiếp hình vuông ABCD.
Cho tam giác đều ABC có cạnh bằng 6 cm.
a) Nêu các vẽ đường tròn ngoại tiếp tam giác ABC.
b) Nêu các vẽ đường tròn nội tiếp tam giác ABC.
c) Tính bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.
Cho tam giác ABC ( AC < BC) nội tiếp đường tròn (O) có AB là đường kính. Từ điểm O vẽ đường thẳng song song với AC và cắt đường tròn (O) tại I (điểm I thuộc cung nhỏ CB).
a) Chứng minh OI vuông góc với BC.
b) Vẽ tiếp tuyến của đường tròn (O) tại B và cắt OI tại M. Chứng minh MC là tiếp tuyến của đường tròn (O).
Cho tam giác ABC ngoại tiếp đường tròn (I). Gọi D, E, F lần lượt là các tiếp điểm của đường tròn (I) với các cạnh AB, BC, AC (Hình 11).
a) Chứng minh 2AD = AB + AC – BC.
b) Tìm các hệ thức tương tự như ở câu a.
Cho tam giác nhọn ABC có đường cao AH (H \( \in \) BC) và nội tiếp đường tròn tâm O có đường kính AM (hình 6). Chứng minh \(\widehat {OAC} = \widehat {BAH}\).
Trong các hình 15a, 15b, 15c, 15d ở hình nào ta có đường tròn (O) là đường tròn ngoại tiếp tam giác ABC? Ở hình nào ta có đường tròn (O) là đường tròn nội tiếp tam giác ABC? Vì sao?
Cho tứ giác ABCD có các tam giác ABC và ACD lần lượt ngoại tiếp các đường tròn (I) và (K) sao cho hai đường tròn này cùng tiếp xúc với đường thẳng AC tại điểm H thuộc đoạn thẳng AC. Giả sử đường tròn (I) tiếp xúc với cạnh AB tại M, đường tròn (K) tiếp xúc với cạnh AD tại N (Hình 17). Chứng minh:
a) Ba điểm I, H, K thẳng hàng.
b) AM = AN.
c) \(\widehat {IAK} = \frac{1}{2}\widehat {BAD}.\)
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:
a) \(\widehat {CBM} = \widehat {CAK}\)
b) Tam giác BHN cân.
c) BC là đường trung trực của HN.
Khung thép của một phần sân khấu có dạng đường tròn bán kính 15m. Mắt của một người thợ ở vị trí A nhìn hai đèn ở các vị trí B, C (A, B, C cùng thuộc đường tròn bán kính 15m), bằng cách nào đó, người thợ thấy rằng góc nhìn \(\widehat {BAC} = 30^\circ \) (hình 31). Khoảng cách giữa hai vị trí B và C bằng bao nhiêu mét?
Tam giác đều ABC có cạnh bằng 6 cm. Tính tổng chu vi của \(\Delta \)ABC, chu vi đường tròn nội tiếp và chu vi đường tròn ngoại tiếp của nó. Từ đó trả lời câu hỏi của bài toán ở phần Khởi động.
Phần Khởi động: Bạn Uyên dùng một sợi thép để uốn thành mẫu hoạ tiết (Hình 7.1). Độ dài của sợi thép ít nhất là bao nhiêu để tam giác đều trong mẫu hoạ tiết có cạnh bằng 6 cm?
Tính bán kính của đường tròn nội tiếp, đường tròn ngoại tiếp tam giác đều có cạnh là:
a) 3 cm;
b) \(\sqrt 6 \)cm
Chứng minh rằng nếu tam giác có tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp trùng nhau thì tam giác đó là tam giác đều.
Tính chu vi của đường tròn nội tiếp và đường tròn ngoại tiếp tam giác đều ABC có cạnh bằng \(3\sqrt 2 \) cm. Diện tích của các hình tròn là bao nhiêu?
Hình vuông ABCD có cạnh 4 cm và hình chữ nhật MNPQ có chiều rộng 2 cm cùng nội tiếp trong đường tròn (O) (Hình 7.26). Tính chiều dài MQ của hình chữ nhật.
Cho tam giác $ABC$ đều cạnh bằng $6\,cm$, ba đường trung tuyến $AM,\,BN,\,CP$ cắt nhau tại $O$.
Tìm phát biểu đúng trong các phát biểu sau:
a) Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường phân giác của tam giác đó.
b) Tâm đường tròn nội tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó.
c) Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm của cạnh huyền.
Tìm phát biểu sai trong các phát biểu sau:
a) Trong một tam giác đều, trọng tâm của tam giác đồng thời là tâm của đường tròn nội tiếp tam giác.
b) Trong một tam giác đều, trọng tâm của tam giác đồng thời là tâm của đường tròn ngoại tiếp tam giác.
c) Tam giác đều cạnh a có bán kính đường tròn ngoại tiếp là \(R = \frac{{a\sqrt 3 }}{6}\).
d) Tam giác đều cạnh a có bán kính đường tròn nội tiếp là \(r = \frac{{a\sqrt 3 }}{3}\).
Cho tam giác ABC cân tại A có O, I lần lượt là tâm các đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC.
a) Chứng minh rằng:
- Ba điểm A, O, I cùng thuộc một đường thẳng;
- Đường thẳng OA vuông góc với BC và đi qua điểm chính giữa D (khác điểm A) của cung BC.
b) Cho BC = 24 cm, AC = 20 cm. Tính độ dài bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.
Cho tam giác ABC vuông tại A có AB = 6, AC = 8, bán kính đường tròn nội tiếp là r, bán kính đường tròn ngoại tiếp là R. Tính \(\frac{r}{R}\).
Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R.
a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC.
b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều.
c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính \(\frac{r}{{R'}}\).
Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Đường thẳng AO cắt (O) và (O’) lần lượt tại hai điểm C, E (khác điểm A). Đường thẳng AO’ cắt (O) và (O’) lần lượt tại hai điểm D, F (khác điểm A). Chứng minh:
a) C, B, F thẳng hàng;
b) Bốn điểm C, D, E, F cùng nằm trên một đường tròn;
c) A là tâm đường tròn nội tiếp tam giác BDE.
Cho tam giác ABC vuông tại A có đường cao AH = 2,4 cm và \(\frac{{AB}}{{AC}} = \frac{3}{4}\). Tính bán kính đường tròn nội tiếp r và bán kính đường tròn ngoại tiếp R của tam giác ABC.
Cho $\Delta ABC\backsim \Delta A'B'C'$ với tỉ số đồng dạng \(k > 0\). Gọi (O, R) và (O’, R’) lần lượt là đường tròn ngoại tiếp các tam giác ABC và A’B’C’. Gọi (I, r) và (I’, r’) lần lượt là đường tròn nội tiếp các tam giác ABC và A’B’C’. Chứng minh rằng \(\frac{R}{{R'}} = \frac{r}{{r'}} = k\).
Cho tam giác đều ABC nội tiếp một đường tròn bán kính 4cm. Hãy tính độ dài mỗi cạnh và bán kính đường tròn nội tiếp của tam giác ABC.
Cho tam giác ABC vuông tại A, có diện là \(24c{m^2}\) và nội tiếp đường tròn có bán kính 5cm. Tính bán kính đường tròn nội tiếp tam giác ABC.
Cho tam giác đều MNP có cạnh bằng \(2a\sqrt 3 \). Tính theo a bán kính các đường tròn ngoại tiếp và nội tiếp tam giác MNP.