Nêu cách sử dụng ê ke để xác định tâm của một đường tròn bất kì khi chưa biết tâm của nó.
Áp dụng định lí “Đường trung tuyến ứng với cạnh huyền trong tam giác vuông bằng một nửa cạnh huyền”.
Tâm đường tròn ngoại tiếp tam giác vuông chính là trung điểm của cạnh huyền.
Đặt đỉnh vuông của eke trùng với một điểm N bất kỳ trên đường tròn, kẻ đường thẳng đi qua cạnh huyền của êke cắt đường tròn tại A và B ta được đường kính AB.
Trung điểm của AB là tâm của đường tròn đó.
Các bài tập cùng chuyên đề
Cho tam giác ABC vuông tại đỉnh A (H.9.15). Gọi N, P lần lượt là trung điểm của các cạnh AB và AC.
a) Vẽ hai đường trung trực a, b của các cạnh AB, AC, cắt nhau tại M.
b) Hãy giải thích vì sao MN, MP là các đường trung bình của tam giác ABC.
c) Hãy giải thích vì sao M là trung điểm của BC, từ đó suy ra đường tròn ngoại tiếp của tam giác ABC có tâm M và bán kính \(MB = MC = \frac{{BC}}{2}\).
Cho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng tam giác ABC vuông cân tại A và có cạnh bên bằng \(2\sqrt 2 cm\).
Cho tam giác vuông cân ABC có AB = AC = 4 cm. Bán kính R của đường tròn ngoại tiếp tam giác có độ dài là
A. 2\(\sqrt 2 \) cm.
B. \(\sqrt 2 \) cm.
C. 4\(\sqrt 2 \) cm.
D. 8\(\sqrt 2 \) cm.
Cho tam giác ABC vuông tại A. Gọi O là trung điểm của BC (hình 7). Đường tròn (O; OB) có phải là đường tròn ngoại tiếp tam giác ABC hay không?
Cho tam giác đều ABC cạnh a, ba đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm O (Hình 8).
a) AM, BN, CP có là các đường trung trực của tam giác ABC hay không?
b) Điểm O có là tâm đường tròn ngoại tiếp tam giác ABC hay không?
c) Tính AM theo a.
d) Tính OA theo a.
Tính bán kính của đường tròn ngoại tiếp tam giác vuông có hai cạnh góc vuông lần lượt bằng 5 cm và 12 cm.
Chứng minh nếu tâm đường tròn ngoại tiếp \(\Delta \)ABC là trung điểm M của cạnh BC thì \(\Delta \)ABC vuông tại A.
Một tam giác vuông có hiệu độ dài hai cạnh góc vuông là 7 cm. Tính diện tích của tam giác vuông đó biết nó nội tiếp trong đường tròn đường kính 13 cm.
Tam giác vuông ABC có hai cạnh góc vuông lần lượt bằng 6 cm và 8 cm. Diện tích đường tròn ngoại tiếp \(\Delta \)ABC bằng
A. \(10\pi \) cm2
B. 20\(\pi \) cm2
C. 25\(\pi \)cm2
D. 100\(\pi \) cm2