Đề bài

Nêu cách sử dụng ê ke để xác định tâm của một đường tròn bất kì khi chưa biết tâm của nó.

Phương pháp giải

Áp dụng định lí “Đường trung tuyến ứng với cạnh huyền trong tam giác vuông bằng một nửa cạnh huyền”.

Tâm đường tròn ngoại tiếp tam giác vuông chính là trung điểm của cạnh huyền.

Lời giải của GV Loigiaihay.com

Đặt đỉnh vuông của eke trùng với một điểm N bất kỳ trên đường tròn, kẻ đường thẳng đi qua cạnh huyền của êke cắt đường tròn tại A và B ta được đường kính AB.

Trung điểm của AB là tâm của đường tròn đó.

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác ABC vuông tại đỉnh A (H.9.15). Gọi N, P lần lượt là trung điểm của các cạnh AB và AC.

a) Vẽ hai đường trung trực a, b của các cạnh AB, AC, cắt nhau tại M.

b) Hãy giải thích vì sao MN, MP là các đường trung bình của tam giác ABC.

c) Hãy giải thích vì sao M là trung điểm của BC, từ đó suy ra đường tròn ngoại tiếp của tam giác ABC có tâm M và bán kính \(MB = MC = \frac{{BC}}{2}\).

Xem lời giải >>
Bài 2 :

Cho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng tam giác ABC vuông cân tại A và có cạnh bên bằng \(2\sqrt 2 cm\).

Xem lời giải >>
Bài 3 :

Cho tam giác vuông cân ABC có AB = AC = 4 cm. Bán kính R của đường tròn ngoại tiếp tam giác có độ dài là

A. 2\(\sqrt 2 \) cm.

B. \(\sqrt 2 \) cm.

C. 4\(\sqrt 2 \) cm.

D. 8\(\sqrt 2 \) cm.

Xem lời giải >>
Bài 4 :

Cho tam giác ABC vuông tại A. Gọi O là trung điểm của BC (hình 7). Đường tròn (O; OB) có phải là đường tròn ngoại tiếp tam giác  ABC hay không?

Xem lời giải >>
Bài 5 :

Cho tam giác đều ABC cạnh a, ba đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm O (Hình 8).

a) AM, BN, CP có là các đường trung trực của tam giác ABC hay không?

b) Điểm O có là tâm đường tròn ngoại tiếp tam giác ABC hay không?

c) Tính AM theo a.

d) Tính OA theo a.

Xem lời giải >>
Bài 6 :

Tính bán kính của đường tròn ngoại tiếp tam giác vuông có hai cạnh góc vuông lần lượt bằng 5 cm và 12 cm.

Xem lời giải >>
Bài 7 :

Chứng minh nếu tâm đường tròn ngoại tiếp \(\Delta \)ABC là trung điểm M của cạnh BC thì \(\Delta \)ABC vuông tại A.

Xem lời giải >>
Bài 8 :

Một tam giác vuông có hiệu độ dài hai cạnh góc vuông là 7 cm. Tính diện tích của tam giác vuông đó biết nó nội tiếp trong đường tròn đường kính 13 cm.

Xem lời giải >>
Bài 9 :

Tam giác vuông ABC có hai cạnh góc vuông lần lượt bằng 6 cm và 8 cm. Diện tích đường tròn ngoại tiếp \(\Delta \)ABC bằng

A. \(10\pi \) cm2

B. 20\(\pi \) cm2

C. 25\(\pi \)cm2

D. 100\(\pi \) cm2

Xem lời giải >>
Bài 10 :

Bán kính của đường tròn ngoại tiếp tam giác mà độ dài ba cạnh 3cm, 4cm, 5cm là:

Xem lời giải >>
Bài 11 :

Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tuỳ ý trên cung nhỏ AC của đường tròn đó. Gọi F là giao điểm của EB và CO, I là tâm đường tròn ngoại tiếp tam giác ECF. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì I luôn di chuyển trên một đoạn thẳng cố định.

Xem lời giải >>
Bài 12 :

Tính bán kính và chu vi của đường tròn ngoại tiếp tam giác ABC có ba cạnh \(AB = 6cm,AC = 8cm\) và \(BC = 10cm\).

Xem lời giải >>
Bài 13 :

Cho tam giác ABC vuông tại A nội tiếp đường tròn (O) có bán kính 2cm. Biết rằng \(AC = 2cm\), tính số đo các góc của tam giác ABC.

Xem lời giải >>
Bài 14 :

Cho tam giác ABC vuông tại B nội tiếp đường tròn (O) và đường kính BD. Tính số đo của góc BAC, biết rằng \(\widehat {BAC} = 2\widehat {CBD}\).

Xem lời giải >>
Bài 15 :

Tính diện tích tam giác vuông cân, nội tiếp đường tròn bán kính 4cm.

Xem lời giải >>
Bài 16 :

Cho hình chữ nhật ABCD có AB = 5 cm, AD = 12 cm. Tìm tâm và bán kính của đường tròn ngoại tiếp các tam giác ABC và ADC.

Xem lời giải >>
Bài 17 :

Cho tam giác vuông ABC có độ dài hai cạnh góc vuông là 5 cm, 12 cm. Bán kính R của đường tròn ngoại tiếp tam giác ABC có độ dài là

A. 13 cm

B. 10 cm

C. 5 cm

D. 6,5 cm

Xem lời giải >>
Bài 18 :

Cho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng ABC là tam giác vuông cân tại A và có cạnh bên bằng \(2\sqrt 2 cm\).

Xem lời giải >>