Đề bài

Sử dụng máy tính cầm tay tìm nghiệm của phương trình bậc hai một ẩn (làm tròn kết quả đến hàng phần mười): \(\sqrt 2 {x^2} - 4x - \sqrt 3 = 0\)

Phương pháp giải

Chuyển về chức năng giải phương trình bậc hai rồi nhập các hệ số.

Lời giải của GV Loigiaihay.com

Bấm liên tiếp các phím:

Ta thấy trên màn hình hiện ra (kết quả gần đúng): \({x_1} = - 0,381543902.\)

Ấn tiếp phím =, ta thấy trên màn hình hiện ra (kết quả gần đúng): \({x_2} = 3,2099710269.\)

Vậy nghiệm của phương trình đã cho là \({x_1} \approx - 0,4\)và \({x_2} \approx 3,2.\)

Các bài tập cùng chuyên đề

Bài 1 :

Sử dụng máy tính cầm tay, tìm các nghiệm của các phương trình sau:

a) \(5{x^2} + 2\sqrt {10} x + 2 = 0\);

b) \(3{x^2} - 5x + 7 = 0\);

c) \(4{x^2} - 4x + 1 = 0\).

Xem lời giải >>
Bài 2 :

Sử dụng máy tính cầm tay, tìm nghiệm của các phương trình sau:

a) \(0,1{x^2} + 2,5x - 0,2 = 0\);

b) \(0,01{x^2} - 0,05x + 0,0625 = 0\);

c) \(1,2{x^2} + 0,75x + 2,5 = 0\).

Xem lời giải >>
Bài 3 :

Sử dụng máy tính cầm tay, tìm nghiệm gần đúng của các phương trình sau (làm tròn kết quả đến chữ số thập phân thứ hai):

a) \(\sqrt 2 {x^2} - \sqrt 5 x + 1 = 0\);

b) \({x^2} - \left( {\sqrt 3  - 1} \right)x + \sqrt 7  = 0\).

Xem lời giải >>
Bài 4 :

Tìm các nghiệm của mỗi phương trình sau bằng máy tính cầm tay.

a) \(3{x^2} - 8x + 4 = 0\)

b) \(5{x^2} - 2\sqrt 5 x + 12 = 0\)

c) \(2{x^2} - 8x + 8 = 0\)

Xem lời giải >>
Bài 5 :

Dùng máy tính cầm tay tính nghiệm (nếu có) của các phương trình sau (làm tròn kết quả đến hàng phần trăm):

a) \(11{x^2} + 4x - 189 = 0\)

b) \(2{x^2} - 8\sqrt 2 x + 16 = 0\)

c) \(\sqrt 2 {x^2} - \sqrt 3 x + 1 = 0\)

Xem lời giải >>