Đề bài

So sánh: \(\sqrt {4.25} \) và \(\sqrt 4 .\sqrt {25} \).

Phương pháp giải

Thực hiện từng phép tính rồi so sánh.

Lời giải của GV Loigiaihay.com

Ta có:

\(\begin{array}{l}\sqrt {4.25}  = \sqrt {100}  = 10\\\sqrt 4 .\sqrt {25}  = 2.5 = 10\end{array}\)

Vậy \(\sqrt {4.25}  = \sqrt 4 .\sqrt {25} \).

Các bài tập cùng chuyên đề

Bài 1 :

Kết quả của phép tính $\sqrt {2,5} .\sqrt {14,4} $ là?

Xem lời giải >>
Bài 2 :

Tính và so sánh: \(\sqrt {100} .\sqrt 4 \) và \(\sqrt {100.4} .\)

Xem lời giải >>
Bài 3 :

Tính:

a) \(\sqrt {12} .\left( {\sqrt {12}  + \sqrt 3 } \right);\)

b) \(\sqrt 8 .\left( {\sqrt {50}  - \sqrt 2 } \right);\)

c) \({\left( {\sqrt 3  + \sqrt 2 } \right)^2} - 2\sqrt 6 .\)

Xem lời giải >>
Bài 4 :

Thực hiện phép tính:

a) \(\sqrt 3 .\left( {\sqrt {192}  - \sqrt {75} } \right);\)

b) \(\frac{{ - 3\sqrt {18}  + 5\sqrt {50}  - \sqrt {128} }}{{7\sqrt 2 }}.\)

Xem lời giải >>
Bài 5 :

a) Thực hiện các phép tính cho trên bảng trong Hình 1.

 

b) Từ đó, có nhận xét gì về căn bậc hai của tích hai số không âm?

Xem lời giải >>
Bài 6 :

Thay mỗi ? bằng các số thích hợp:

a) \(\sqrt {50}  = \sqrt ? .\sqrt 2  = ?.\sqrt 2 \)

b) \(\sqrt {3.{{( - 4)}^2}}  = \sqrt ? .\sqrt 3  = ?.\sqrt 3 \)

c) \(3\sqrt 2  = \sqrt ? .\sqrt 2  = \sqrt ? \)

d) \( - 2\sqrt 5  =  - \sqrt ? .\sqrt 5  =  - \sqrt ? \)

Xem lời giải >>
Bài 7 :

Tính

a) \(\sqrt {0,16.64} \)

b) \(\sqrt {8,{{1.10}^3}} \)

c) \(\sqrt {12.250.1,2} \)

d) \(\sqrt {28} .\sqrt 7 \)

e) \(\sqrt {4,9} .\sqrt {30} .\sqrt {12} \)

Xem lời giải >>
Bài 8 :

Tính diện tích của hình chữ nhật và hình vuông trong hoạt động khởi động. Biết mỗi ô vuông nhỏ có độ dài cạnh là 1. Diện tích của hai hình đó bằng nhau không?

Xem lời giải >>
Bài 9 :

Tính

a) \(\sqrt {16.0,25} \)

b) \(\sqrt {{2^4}.{{( - 7)}^2}} \)

c) \(\sqrt {0,9} .\sqrt {1000} \)

d) \(\sqrt 2 .\sqrt 5 .\sqrt {40} \)

Xem lời giải >>
Bài 10 :

Áp dụng quy tắc về căn bậc hai của một tích, hãy tính:

a. \(\sqrt {25.121} \);

b. \(\sqrt 2 .\sqrt {\frac{9}{8}} \);

c. \(\sqrt {10} .\sqrt {5,2} .\sqrt {52} \).

Xem lời giải >>
Bài 11 :

Áp dụng quy tắc về căn bậc hai của một tích, hãy tính:

a. \(\sqrt {36.81} \)

b. \(\sqrt {49.121.169} \)

c. \(\sqrt {{{50}^2} - {{14}^2}} \)

d. \(\sqrt {3 + \sqrt 5 } .\sqrt {3 - \sqrt 5 } \)

Xem lời giải >>
Bài 12 :

Tốc độ gần đúng của một ô tô ngay trước khi đạp phanh được tính theo công thức \(v = \sqrt {2\lambda gd} \), trong đó \(v\left( {m/s} \right)\) là tốc độ của ô tô, \(d\left( m \right)\) là chiều dài của vết trượt tính từ thời điểm đạp phanh cho đến khi ô tô dừng lại trên đường, \(\lambda \) là hệ số cản lăn của mặt đường, \(g = 9,8m/{s^2}\). Nếu một ô tô để lại vết trượt dài khoảng 20m trên đường nhựa thì tốc độ của ô tô trước khi đạp phanh là khoảng bao nhiêu mét trên giây (làm tròn đến kết quả đến hàng đơn vị)? Biết rằng hệ số cản lăn của đường nhựa là \(\lambda  = 0,7\).

Xem lời giải >>
Bài 13 :

Tính và so sánh

a) \(\sqrt {9.16} \) và \(\sqrt 9 .\sqrt {16} \)            

b)\(\sqrt {4.25} \) và \(\sqrt 4 .\sqrt {25} \)

Xem lời giải >>
Bài 14 :

Rút gọn

a) \(\sqrt {\frac{7}{6}} .\sqrt {42} \); 

b)\(\sqrt {0,16.36.225} \);                  

c) \(\sqrt {0,3} .\sqrt {51} .\sqrt {10} .\sqrt {17} \)

Xem lời giải >>
Bài 15 :

Tốc độ của xe ô tô và vết trượt của bánh xe trên mặt đường khi phanh gấp liên hệ với nhanh bởi công thức\(v = \sqrt {20kl} \), trong đó v (m/s) là tốc độ của xe ô tô khi phanh gấp, k là hệ số ma sát giữa bánh xe và mặt đường khi xe ô tô phanh và \(l\) (m) là độ dài vết trượt của bánh xe trên mặt đường.

a) Một ô tô đang chạy trên đường thì phanh gấp và tạo ra một vết trượt của bánh xe dài 25 m. Hỏi tốc độ của ô tô khi phanh gấp là bao nhiêu, biết hệ số ma sát giữa bánh xe và mặt đường ở thời điểm đó là 0,8?

b) Nếu tốc độ của một ô tô khi phanh gấp là 15 m/s và hệ số ma sát giữa bánh xe và mặt đường ở thời điểm đó là 0,6 thì vết trượt của bánh xe dài bao nhiêu?

Xem lời giải >>
Bài 16 :

Một hình chữ nhật có chiều dài và chiều rộng lần lượt là \(\sqrt {56} cm\) và \(\sqrt {14} cm\). Tính diện tích của hình chữ nhật.

Xem lời giải >>
Bài 17 :

Kết quả của phép tính: \(\sqrt {1,25} .\sqrt {51,2} \) là?

Xem lời giải >>
Bài 18 :

Phép tính $\sqrt {{{\left( { - 5} \right)}^2}{{.7}^2}} $ có kết quả là?

Xem lời giải >>
Bài 19 :

Phép tính \(\sqrt {{{12}^2}.{{\left( { - 11} \right)}^2}} \) có kết quả là?

Xem lời giải >>
Bài 20 :

Tính : \(P = 2\sqrt 2 \left( {\sqrt 3  - 2} \right) + {\left( {1 + 2\sqrt 2 } \right)^2} - 2\sqrt 6  - \sqrt {9 - \sqrt {17} } .\sqrt {9 + \sqrt {17} } \)

Xem lời giải >>
Bài 21 :

Tính \(M = \left( {4 + \sqrt {15} } \right)\left( {\sqrt {10}  - \sqrt 6 } \right)\sqrt {4 - \sqrt {15} }  \)\(+ \sqrt {3 - \sqrt 5 } \left( {\sqrt {10}  - \sqrt 2 } \right)\left( {3 + \sqrt 5 } \right)\)

Xem lời giải >>
Bài 22 :

Giá trị của biểu thức \(\sqrt {32}  + \sqrt {50}  - 3\sqrt 8  - \sqrt {18} \) là

Xem lời giải >>
Bài 23 :

Giá trị của biểu thức \(2\sqrt {32}  - \sqrt {27}  - 4\sqrt 8  + 3\sqrt {75} \) là:

Xem lời giải >>
Bài 24 :

Giá trị của biểu thức \(\sqrt {125}  - 4\sqrt {45}  + 3\sqrt {20}  - \sqrt {80} \) là:

Xem lời giải >>
Bài 25 :

Không dùng MTCT, tính giá trị của biểu thức sau: \(P = \sqrt {2 + \sqrt {2 + \sqrt 2 } } .\sqrt {2 - \sqrt {2 + \sqrt 2 } } .\sqrt {4 + \sqrt 8 } \).

Xem lời giải >>
Bài 26 :

Rút gọn biểu thức \(P = \frac{{3\sqrt {10}  + \sqrt {20}  - 3\sqrt 6  - \sqrt {12} }}{{\sqrt 5  - \sqrt 3 }}\).

Xem lời giải >>
Bài 27 :

So sánh \(\sqrt {\sqrt {6 + \sqrt {20} } } \) và \(\sqrt {\sqrt 6  + 1} \).

Xem lời giải >>
Bài 28 :

Viết các biểu thức sau dưới dạng \(\sqrt a \) (a là một số).

a) \(\sqrt 5 .\sqrt {11} \)

b) \(\sqrt {\frac{{10}}{3}} .\sqrt {\frac{3}{5}} \)

c) \(\sqrt 3 .\sqrt 5 .\sqrt 6 \)

d) \(\sqrt {\frac{6}{7}} .\sqrt {2,8} \)

Xem lời giải >>
Bài 29 :

a) \(\sqrt {{{74}^2} - {{70}^2}} \)

b) \(\sqrt {{{\left( {62,5{)^2} - (58,5} \right)}^2}}  + \left( {\sqrt {11}  - 2\sqrt 5 } \right)\left( {\sqrt {11}  + 2\sqrt 5 } \right)\)

Xem lời giải >>
Bài 30 :

Cho Hình 1. Biết ABCD là hình vuông có diện tích bằng 6, CMNF là hình vuông có diện tích bằng 18. Tính diện tích hình chữ nhật CDEF.

 

Xem lời giải >>