Đề bài

Với mỗi giá trị đã cho của m, hãy giải hệ phương trình sau: \(\left\{ \begin{array}{l}x\sqrt 2  - 3y = m\\{m^2}x - 3y\sqrt 2  = 2\end{array} \right.\).

a) \(m = \sqrt 2 \);

b) \(m =  - \sqrt 2 \);

c) \(m = 2\sqrt 2 \).

Phương pháp giải

+ Thay giá trị của m vào hệ phương trình. Từ đó tiến hành giải hệ phương trình.

+ Để giải một hệ hai phương trình bậc nhất hai ẩn có hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau, ta có thể làm như sau:

Bước 1. Cộng hay trừ từng vế của hai phương trình trong hệ được phương trình chỉ còn chứa một ẩn.

Bước 2. Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ phương trình đã cho.

+ Trường hợp hệ phương trình đã cho không có hai hệ số của cùng một ẩn bằng nhau hoặc đối nhau, ta có thể đưa về trường hợp đã xét bằng cách nhân hai vế của mỗi phương trình với một số thích hợp (khác 0).

Lời giải của GV Loigiaihay.com

a) Với \(m = \sqrt 2 \) thay vào hệ phương trình ta có: \(\left\{ \begin{array}{l}x\sqrt 2  - 3y = \sqrt 2 \\{\left( {\sqrt 2 } \right)^2}x - 3y\sqrt 2  = 2\end{array} \right.\) (I)

Nhân hai vế của phương trình thứ nhất của hệ phương trình (I) với \(\sqrt 2 \) ta có: \(\left\{ \begin{array}{l}2x - 3\sqrt 2 y = 2\\2x - 3y\sqrt 2  = 2\end{array} \right.\)

Trừ từng vế của hệ phương trình mới ta được \(0 = 0\) (luôn đúng). Hệ thức này luôn thỏa mãn với các giá trị tùy ý của x và y.

Với giá trị tùy ý của x, giá trị của y được tính nhờ hệ thức \(x\sqrt 2  - 3y = \sqrt 2 \), suy ra \(y = \frac{{x\sqrt 2  - \sqrt 2 }}{3}\).

Vậy hệ phương trình đã cho có nghiệm là \(\left( {x;\frac{{x\sqrt 2  - \sqrt 2 }}{3}} \right)\) với \(x \in \mathbb{R}\).

b) Với \(m =  - \sqrt 2 \) thay vào hệ phương trình ta có: \(\left\{ \begin{array}{l}x\sqrt 2  - 3y =  - \sqrt 2 \\{\left( { - \sqrt 2 } \right)^2}x - 3y\sqrt 2  = 2\end{array} \right.\) (I)

Nhân hai vế của phương trình thứ nhất của hệ phương trình (I) với \(\sqrt 2 \) ta có: \(\left\{ \begin{array}{l}2x - 3\sqrt 2 y =  - 2\\2x - 3y\sqrt 2  = 2\end{array} \right.\)

Trừ từng vế của hệ phương trình mới ta được \(0 =  - 4\) (vô lí). Vậy hệ phương trình đã cho vô nghiệm.

c) Với \(m = 2\sqrt 2 \) thay vào hệ phương trình ta có: \(\left\{ \begin{array}{l}x\sqrt 2  - 3y = 2\sqrt 2 \\{\left( {2\sqrt 2 } \right)^2}x - 3y\sqrt 2  = 2\end{array} \right.\) (I)

Nhân hai vế của phương trình thứ nhất của hệ phương trình (I) với \(\sqrt 2 \) ta có: \(\left\{ \begin{array}{l}2x - 3\sqrt 2 y = 4\\8x - 3y\sqrt 2  = 2\end{array} \right.\)

Trừ từng vế của hệ phương trình mới ta được \( - 6x = 2\), suy ra \(x = \frac{{ - 1}}{3}\).

Thay \(x = \frac{{ - 1}}{3}\) vào phương trình \(x\sqrt 2  - 3y = 2\sqrt 2 \) ta có: \(\frac{{ - 1}}{3}.\sqrt 2  - 3y = 2\sqrt 2 \), suy ra \(y = \frac{{ - 7\sqrt 2 }}{9}\).

Vậy hệ phương trình có nghiệm \(\left( {\frac{{ - 1}}{3};\frac{{ - 7\sqrt 2 }}{9}} \right)\).

Các bài tập cùng chuyên đề

Bài 1 :

Tìm các giá trị của m để nghiệm của hệ phương trình :

\(\left\{ \begin{array}{l}\dfrac{{2x + 1}}{3} - \dfrac{{y + 1}}{4} = \dfrac{{4x - 2y + 2}}{5}\\\dfrac{{2x - 3}}{4} - \dfrac{{y - 4}}{3} =  - 2x + 2y - 2\end{array} \right.\)

cũng là nghiệm của phương trình \(6mx - 5y = 2m - 66\).

Xem lời giải >>
Bài 2 :

Giải các hệ phương trình:

a) \(\left\{ \begin{array}{l}2x + 5y = 10\\\frac{2}{5}x + y = 1;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}0,2x + 0,1y = 0,3\\3x + y = 5;\end{array} \right.\)

c) \(\left\{ \begin{array}{l}\frac{3}{2}x - y = \frac{1}{2}\\6x - 4y = 2.\end{array} \right.\)

Xem lời giải >>
Bài 3 :

Giải các hệ phương trình:

a) \(\left\{ \begin{array}{l}0,5x + 2y =  - 2,5\\0,7x - 3y = 8,1;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}5x - 3y =  - 2\\14x + 8y = 19;\end{array} \right.\)

c) \(\left\{ \begin{array}{l}2\left( {x - 2} \right) + 3\left( {1 + y} \right) =  - 2\\3\left( {x - 2} \right) - 2\left( {1 + y} \right) =  - 3.\end{array} \right.\)

Xem lời giải >>
Bài 4 :

Giải các hệ phương trình

a) \(\left\{ {\begin{array}{*{20}{c}}{3x + y = 3}\\{2x - y = 7}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{x - y = 3}\\{3x - 4y = 2}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{4x + 5y = - 2}\\{2x - y = - 8}\end{array}} \right.\)

d) \(\left\{ {\begin{array}{*{20}{c}}{3x + y = 3}\\{ - 3y = 5}\end{array}} \right.\)

Xem lời giải >>
Bài 5 :

Giải các hệ phương trình

a) \(\left\{ {\begin{array}{*{20}{c}}{4x + y = 2}\\{\frac{4}{3}x + \frac{1}{3}y = 1}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{x - y\sqrt 2 = 0}\\{2x + y\sqrt 2 = 3}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{5x\sqrt 3 + y = 2\sqrt 2 }\\{x\sqrt 6 - y\sqrt 2 = 2}\end{array}} \right.\)

d) \(\left\{ {\begin{array}{*{20}{c}}{2(x + y) + 3(x - y) = 4}\\{(x + y) + 2(x - y) = 5}\end{array}} \right.\)

Xem lời giải >>
Bài 6 :

Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:

a) A(1; 2) và B(3; 8)

b) A(2;1) và B(4; - 2)

Xem lời giải >>
Bài 7 :

Trong tháng thứ nhất, hai tổ sản xuất được 800 chi tiết máy. So với tháng thứ nhất, trong tháng thứ hai, tổ một sản xuất vượt 15%, tổ hai vượt 20% nên trong tháng này, cả hai tổ đã sản xuất được 945 chi tiết máy. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu chi tiết máy?

Xem lời giải >>
Bài 8 :

Cân bằng phương trình hoá học sau bằng phương pháp đại số.

a) Ag + Cl2 \( \to \) AgCl

b) CO2 + C \( \to \) CO

Xem lời giải >>
Bài 9 :

Xác định \(a\) và \(b\) để đồ thị của hàm số \(y = ax + b\) đi qua hai điểm \(A\) và \(B\) trong mỗi trường hợp sau:

a) \(A\left( {3; - 2} \right)\) và \(B\left( { - 3;1} \right)\)

b) \(A\left( {0;2} \right)\) và \(B\left( {\sqrt 3 ;2} \right)\)

Xem lời giải >>
Bài 10 :

Giải các hệ phương trình sau bằng phương pháp cộng hoặc phương pháp thế:

a) \(\left\{ \begin{array}{l}3x + 4y = 8\\2x - 5y =  - 10\end{array} \right.\);

b) \(\left\{ \begin{array}{l}9x - 11y = 6\\3x + y = 4\end{array} \right.\);

c) \(\left\{ \begin{array}{l} - 0,4x + 0,5y =  - 6\\1,2x - 1,8y = 21\end{array} \right.\);

d) \(\left\{ \begin{array}{l}2x - 6y = 14\\ - x + 3y =  - 7\end{array} \right.\).

Xem lời giải >>
Bài 11 :

Cho hệ phương trình \(\left\{ \begin{array}{l}3x + y =  - 4\\6x + 2y =  - 8\end{array} \right.\). Khẳng định nào sau đây là đúng?

A. Hệ phương trình trên có đúng một nghiệm.

B. Hệ phương trình trên vô nghiệm.

C. Hệ phương trình trên có vô số nghiệm \(\left( {x;y} \right)\) với \(x \in \mathbb{R}\) và \(y \in \mathbb{R}\).

D. Hệ phương trình trên có vô số nghiệm \(\left( {x;y} \right)\) với \(x \in \mathbb{R}\) và \(y =  - 3x - 4\).

Xem lời giải >>
Bài 12 :

Đồ thị của hàm số \(y = mx + n\) đi qua hai điểm \(A\left( {2;3} \right)\) và \(B\left( {1; - 1} \right)\) nếu:

A. \(m = 1\) và \(n = 1\).

B. \(m = 2\) và \(n =  - 1\).

C. \(m = 4\) và \(n =  - 5\).

D. \(m =  - 2\) và \(n = 1\).

Xem lời giải >>
Bài 13 :

Phương trình \(\left( {3a + 4b + 1} \right)x = a + 3b - 3\) có vô số nghiệm \(x \in \mathbb{R}\) khi:

A. \(a = 1\) và \(b =  - 1\).

B. \(a =  - 3\) và \(b = 2\).

C. \(a = 5\) và \(b =  - 4\).

D. \(a =  - 7\) và \(b = 5\).

Xem lời giải >>
Bài 14 :

Cân bằng phương trình hóa học \(xC{u_2}O + {O_2} \to yCuO\), ta được \(\left( {x;y} \right)\) là

Xem lời giải >>
Bài 15 :

Tọa độ giao điểm hai đường thẳng \(x + y = 4\) và \(2x - y = 5\) là:

Xem lời giải >>
Bài 16 :

Trên mặt phẳng tọa độ, vẽ các đường thẳng \(\left( {AB} \right):y = x - 2\), đường thẳng \(\left( {AC} \right):2x + y = 1\) và đường thẳng \(\left( {BC} \right): - 4x + y = 4\). Tìm trên đồ thị tọa độ các đỉnh của tam giác ABC.

Xem lời giải >>
Bài 17 :

Tìm các giá trị của m để nghiệm của hệ phương trình :\(\left\{ \begin{array}{l}\dfrac{{x + 1}}{4} - \dfrac{y}{2} = x + y + 1\\\dfrac{{x - 2}}{2} + \dfrac{{y - 1}}{3} = x + y - 1\end{array} \right.\)

cũng là nghiệm của phương trình \(\left( {m + 2} \right)x + 7my = m - 225\).

Xem lời giải >>
Bài 18 :

Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( { - 4; - 2} \right);B\left( {2;1} \right)\).

Xem lời giải >>
Bài 19 :

Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 ;2} \right);B\left( {0;2} \right)\).

Xem lời giải >>
Bài 20 :

Biết rằng khi \(m\) thay đổi, giao điểm của hai đường thẳng \(y = 3x - m - 1\) và \(y = 2x + m - 1\)  luôn nằm trên đường thẳng \(y = \,ax + b\) . Khi đó tổng \(S = a + b\) là

Xem lời giải >>
Bài 21 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 2{m^2}x + 9y = 3\left( {m + 3} \right)\end{array} \right.\), trong đó m là số đã cho. Giải hệ phương trình trong mỗi trường hợp sau:

a) \(m =  - 2\);

b) \(m =  - 3\);

c) \(m = 3\).

Xem lời giải >>
Bài 22 :

Không sử dụng MTCT, giải các hệ phương trình sau:

a) \(\left\{ \begin{array}{l}4x - 7y = 5\\ - 6x + y = 2\end{array} \right.\);

b) \(\left\{ \begin{array}{l}x - y - 1,5 = 0\\ - 3x - 2 = 0\end{array} \right.\)

Xem lời giải >>
Bài 23 :

Hệ phương trình \(\left\{ \begin{array}{l}3x - ay = b\\ax + by = 3\end{array} \right.\) có nghiệm là (2; -3) khi

A. \(a = 3,b = 3\).

B. \(a = 3,b =  - 3\).

C. \(a =  - 3,b = 3\).

D. \(a =  - 3,b =  - 3\).

Xem lời giải >>
Bài 24 :

Giải các hệ phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{2x + 3y =  - 2}\\{3x - 2y =  - 3}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{3x + 5y =  - 7}\\{3x - 4y = 11}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y =  - 14}\\{2x + 3y = 2}\end{array}} \right.\)

d) \(\left\{ {\begin{array}{*{20}{c}}{4x + 5y = 15}\\{6x - 4y = 11}\end{array}} \right.\)

Xem lời giải >>
Bài 25 :

Giải các hệ phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{3x - 2y = 10}\\{x - \frac{2}{3}y = 3\frac{1}{3}}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{\frac{x}{y} = \frac{2}{3}}\\{x + y + 10 = 0}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{x - \sqrt 3 y = 0}\\{\sqrt 3 x - 2y = 2}\end{array}} \right.\)

d) \(\left\{ {\begin{array}{*{20}{c}}{\sqrt 3 x - \sqrt 5 y = 2}\\{\sqrt 5 x - 3\sqrt 3 y = 2\sqrt {15} }\end{array}} \right.\)

Xem lời giải >>
Bài 26 :

Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được 3 600 tấn thóc. Năm nay, hai đơn vị thu hoạch được 4 095 tấn thóc. Hỏi năm nay, mỗi đơn vị thu hoạch được bao nhiêu tấn thóc, biết rằng năm nay, đơn vị thứ nhất làm vượt mức 15%, đơn vị thứ hai làm vượt mức 12% so với năm ngoái?

Hãy dùng máy tính cầm tay để kiểm tra lại kết quả thu được.

Xem lời giải >>
Bài 27 :

Cho hệ phương trình \(\left\{ \begin{array}{l}mx + 9y = m + 3\\x + my = 2\end{array} \right.\).

Giải hệ phương trình đã cho trong mỗi trường hợp sau:

a) \(m = 1\);

b) \(m =  - 3\);

c) \(m = 3\).

Xem lời giải >>
Bài 28 :

Giải các hệ phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{3x + 2y = 4}\\{2x - y = 5}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{5x + 2y =  - 26}\\{ - x + 3y =  - 5}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{\frac{3}{2}x - 2y = 5}\\{4x + y = 7}\end{array}} \right.\)

d) \(\left\{ {\begin{array}{*{20}{c}}{4x + 3y =  - 9}\\{\frac{3}{4}x - \frac{1}{2}y = \frac{{29}}{8}}\end{array}} \right.\)

Xem lời giải >>
Bài 29 :

Giải các hệ phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{x + y\sqrt 3  = 0}\\{x\sqrt 3  + 2y = 2}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{\sqrt 3 x + y = 3 + 3\sqrt 2 }\\{2x - \sqrt 2 y = 2\sqrt 3  - 6}\end{array}} \right.\)

Xem lời giải >>
Bài 30 :

Giải các hệ phương trình:

a) \(\left\{ \begin{array}{l}2x + 5y = 10\\\frac{2}{5}x + y = 1\end{array} \right.\);

b) \(\left\{ \begin{array}{l}0,2x + 0,1y = 0,3\\3x + y = 5\end{array} \right.\);

c) \(\left\{ \begin{array}{l}\frac{3}{2}x - y = \frac{1}{2}\\6x - 4y = 2\end{array} \right.\).

Xem lời giải >>