Đề bài

Cho hình thoi ABCD có \(\widehat A = {60^o}\). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.

Phương pháp giải

+ Chứng minh tam giác ABD đều nên \(BD = AB = AD\).

+ Chứng minh \(MB = BN = PD = DQ = MQ = NP = \frac{{AB}}{2}\).

+ Chứng minh \(\widehat B = \widehat {BNP} = \widehat {NPD} = \widehat D = \widehat {DQM} = \widehat {QMB} = {120^o}\)

+ Suy ra MBNPDQ là lục giác đều.

Lời giải của GV Loigiaihay.com

Vì ABCD là hình thoi nên \(AB = BC = CD = AD\).

Vì M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên \(MB = BN = NC = PC = PD = DQ = \frac{{AB}}{2}\) (1)

Tam giác ABD có: \(AB = AD\) nên tam giác ABD là tam giác cân tại A, mà \(\widehat A = {60^o}\) nên tam giác ABD đều. Do đó, \(AB = BD\).

Vì M, Q lần lượt là trung điểm của AB và AD (gt) nên MQ là đường trung bình của tam giác ABD. Do đó, \(MQ = \frac{1}{2}BD = \frac{1}{2}AB\) (2).

Vì N, P lần lượt là trung điểm của BC và CD (gt) nên NP là đường trung bình của tam giác CBD. Do đó, \(NP = \frac{1}{2}BD = \frac{1}{2}AB\) (3)

Từ (1), (2) và (3) ta có: \(MB = BN = PD = DQ = MQ = NP\) (*)

Vì ABCD là hình thoi nên \(\widehat {ABC} = \widehat {ADC};\widehat C = \widehat A = {60^o}\)

Ta có:

\(\widehat {ABC} + \widehat {ADC} + \widehat C + \widehat A = {360^o} \Rightarrow \widehat {ABC} = \widehat {ADC} = {360^o} - {2.60^o} = {120^o}\)

Tam giác NPC có: \(NC = PC\) nên tam giác NPC cân tại C. Mà \(\widehat C = {60^o}\) nên tam giác NPC đều.

Do đó, \(\widehat {CNP} = {60^o}\)

Ta có: \(\widehat {BNP} + \widehat {PNC} = {180^o}\) (hai góc kề bù) nên \(\widehat {BNP} = {120^o}\)

Chứng minh tương tự ta có:

\(\widehat {NPD} = \widehat {DQM} = \widehat {QMB} = {120^o}\)

Do đó: \(\widehat {ABC} = \widehat {ADC} = \widehat {BNP} = \widehat {NPD} = \widehat {DQM} = \widehat {QMB} = {120^o}\) (**)

Từ (*) và (**) ta có: MBNPDQ là lục giác đều.

Các bài tập cùng chuyên đề

Bài 1 :

Ta đã biết các tam giác đều và hình vuông có các đỉnh nằm trên một đường tròn. Ta dựng một đa giác lồi 5 cạnh có các đỉnh nằm trên một đường tròn như sau:

- Vẽ đường tròn tâm O bán kính R.

- Lần lượt lấy các điểm A, B, C, D, E trên đường tròn theo thứ tự ngược chiều kim đồng hồ (hoặc theo chiều kim đồng hồ) sao cho: \(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOA} = \frac{{{{360}^o}}}{5} = {72^o}\).

Em hãy giải thích vì sao các cạnh và các góc của đa giác ABCDE bằng nhau (H.9.39).

Xem lời giải >>
Bài 2 :

Nếu một lục giác đều (đa giác đều 6 cạnh) nội tiếp một đường tròn bán kính 2cm (H.9.40) thì độ dài các cạnh của lục giác đều đó bằng bao nhiêu centimét? Số đo các góc của lục giác đều bằng bao nhiêu độ?

Xem lời giải >>
Bài 3 :

Cho M, N, P, Q, K lần lượt là trung điểm của các cạnh AB, BC, CD, DE và EA của ngũ giác đều ABCDE (H.9.44). Hỏi MNPQK có phải là ngũ giác đều hay không?

Xem lời giải >>
Bài 4 :

Cho một bát giác đều (đa giác đều 8 cạnh) nội tiếp một đường tròn tâm O (H.9.45). Hỏi mỗi góc của bát giác đều có số đo bằng bao nhiêu?

Xem lời giải >>
Bài 5 :

Trong các hình phẳng sau (H.9.52), hình nào là hình phẳng có dạng đa giác đều?

Xem lời giải >>
Bài 6 :

Cho tam giác đều ABC nội tiếp đường tròn (O) bán kính 2cm. Tính độ dài các cạnh của tam giác ABC.

Xem lời giải >>
Bài 7 :

Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều \({60^o}\) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.

Xem lời giải >>
Bài 8 :

Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3cm. Tính chu vi và diện tích của một hình lục giác đều đã cho.

Xem lời giải >>
Bài 9 :

Cho đường tròn (O; R), trên đó lấy các điểm M, N, P, Q, R sao cho số đo các cung \(\overset\frown{MN},\overset\frown{NP},\overset\frown{PQ},\overset\frown{QR},\overset\frown{RM}\) bằng nhau. Đa giác MNPQR có là đa giác đều không? Vì sao?

Xem lời giải >>
Bài 10 :

Cho lục giác đều ABCDEF có M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA. Đa giác MNPQRS có là đa giác đều không? Vì sao?

Xem lời giải >>
Bài 11 :

Cho lục giác đều ABCDEF nội tiếp đường tròn bán kính R. Độ dài cạnh AB bằng

A. R.

B. R\(\sqrt 3 \).

C. \(\frac{{R\sqrt 3 }}{2}\).

D. \(\frac{R}{2}\)

Xem lời giải >>
Bài 12 :

Cho tam giác đều ABC có O là tâm đường tròn ngoại tiếp. Phép quay nào với O là tâm biến tam giác ABC thành chính nó?

A. 90o.

B. 100o.

C. 110o.

D. 120o.

Xem lời giải >>
Bài 13 :

Quan sát Hình 7 và nêu đặc điểm về cạnh và góc của tam giác đều, hình vuông, lục giác đều.

Xem lời giải >>
Bài 14 :

Ghép sau miếng phẳng hình tam giác đều có cạnh bằng nhau để tạo thành hình lục giác ABCDEG như Hình 10. Lục giác ABCDEG có là lục giác đều hay không? Vì sao?

Xem lời giải >>
Bài 15 :

Cho ngũ giác ABCDE có các cạnh bằng nhau và \(\widehat A = \widehat B = \widehat C = 108^\circ .\) Ngũ giác ABCDE có phải là ngũ giác đều hay không?

Xem lời giải >>
Bài 16 :

Bạn Đan gấp một tờ giấy (có dạng hình vuông) lần lượt theo Hình 21a và Hình 21b để được Hình 21c, rồi cắt theo đoạn thẳng màu đỏ như ở Hình 21c, sau đó mở ra và được tờ giấy như Hình 21d. Bạn Đan cho rằng đó là một lục giác đều, theo em, bạn Đan nói đúng hay không?

Xem lời giải >>
Bài 17 :

Cho các vật thể có dạng các đa giác đều như ở hình 35. Gọi tên từng đa giác đều đó.

Xem lời giải >>
Bài 18 :

Quan sát từng đa giác đều và tìm số thích hợp vào ô trống trong bảng sau:

Xem lời giải >>
Bài 19 :

Quan sát hình 36a, 36b, 36c và dùng compa, thước thẳng để vẽ lục giác đều theo cách đó.

Xem lời giải >>
Bài 20 :

Cho các đa giác trong Bảng 8.1. So sánh các cạnh và các góc của mỗi đa giác, cho biết các đa giác ở cột B có đặc điểm gì khác so với đa giác tương ứng ở cột A.

Xem lời giải >>
Bài 21 :

Tính số đo các góc B và E của lục giác đều trong Hình 8.4, biết \(\widehat A = {120^o}\).

Xem lời giải >>
Bài 22 :

Kể tên các loại đa giác đều có trong Hình 8.14.

Xem lời giải >>
Bài 23 :

Tìm các số thích hợp cho các ô ? trong Bảng 8.2:

Xem lời giải >>
Bài 24 :

Cho ngũ giác đều MNPQR như Hình 8.15. Kể tên các đỉnh, các góc, các cạnh và đường chéo của ngũ giác đều.

Xem lời giải >>
Bài 25 :

Cho ngũ giác đều ABCDE như Hình 8.16.

a) Tính tổng các góc trong tam giác ABC, ACD, ADE, từ đó suy ra tổng các góc trong ngũ giác đều ABCDE.

b) Tính số đo góc E.

 

Xem lời giải >>
Bài 26 :

Có bao nhiêu đa giác đều trong Hình 8.36?

 

Xem lời giải >>
Bài 27 :

Tính số đo mỗi góc của khung gỗ trang trí có hình bát giác đều như Hình 8.37.

Xem lời giải >>
Bài 28 :

Chu vi của lục giác đều có độ dài cạnh 2 cm bằng

A. 8 cm

B. 10 cm

C. 12 cm

D. 16 cm

Xem lời giải >>