Đề bài

Cho tam giác đều ABC nội tiếp đường tròn (O). Biết rằng đường tròn (O) có bán kính bằng 3cm. Tính diện tích tam giác ABC.

Phương pháp giải

+ Vì tam giác ABC đều nội tiếp đường tròn (O) nên O là trọng tâm, trực tâm của tam giác ABC.

+ Gọi H là giao điểm của AO và BC nên AH là trung trực đồng thời là đường cao trong tam giác đều ABC. Do đó: \(OA = \frac{{BC\sqrt 3 }}{3}\), từ đó tính được BC.

+ Diện tích tam giác ABC: \(S = \frac{1}{2}AH.BC\).

Lời giải của GV Loigiaihay.com

Vì tam giác ABC đều nội tiếp đường tròn (O) nên O là trọng tâm, trực tâm của tam giác ABC.

Gọi H là giao điểm của AO và BC nên AH là trung trực đồng thời là đường cao, đường trung tuyến trong tam giác đều ABC.

Do đó: \(OA = \frac{{BC\sqrt 3 }}{3} \Rightarrow BC = \sqrt 3 OA = 3\sqrt 3 \left( {cm} \right)\)

Vì O là trọng tâm của tam giác ABC, AH là đường trung tuyến của tam giác ABC nên \(AH = \frac{3}{2}OA = \frac{3}{2}.3 = \frac{9}{2}\left( {cm} \right)\)

Diện tích tam giác ABC là:

\(S = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{9}{2}.3\sqrt 3  = \frac{{27\sqrt 3 }}{4}\left( {c{m^2}} \right)\)

Các bài tập cùng chuyên đề

Bài 1 :

Tính độ dài cạnh của tam giác đều nội tiếp \(\left( {O;R} \right)\) theo \(R.\)

Xem lời giải >>
Bài 2 :

a) Vẽ tam giác đều ABC. Hãy trình bày cách xác định tâm của đường tròn ngoại tiếp tam giác ABC và vẽ đường tròn đó.

b) Giải thích vì sao tâm O của đường tròn ngoại tiếp tam giác ABC trùng với trọng tâm của tam giác đó (H.9.17).

c) Giải thích vì sao \(\widehat {OBM} = {30^o}\) và \(OB = \frac{{\sqrt 3 }}{3}BC\) (với M là trung điểm của BC).

Xem lời giải >>
Bài 3 :

Cho tam giác đều ABC nội tiếp đường tròn (O) có bán kính bằng 4cm. Tính độ dài các cạnh của tam giác ABC.

Xem lời giải >>
Bài 4 :

Cho tam giác đều ABC có cạnh bằng 3cm và nội tiếp đường tròn (O) như Hình 9.26.

a) Tính bán kính R của đường tròn (O).

b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC.

Xem lời giải >>
Bài 5 :

Trong một khu vui chơi có dạng hình tam giác đều có cạnh bằng 60m, người ta muốn tìm một vị trí đặt bộ phát sóng wifi sao cho ở chỗ nào trong khu vui chơi đó đều có thể bắt được sóng. Biết rằng bộ phát sóng đó có tầm phát sóng tối đa 50m, hỏi rằng có thể tìm được vị trí để đặt bộ phát sóng như vậy hay không?

Xem lời giải >>
Bài 6 :

Một trại nuôi gia súc có dạng hình tam giác đều cạnh 100 m (Hình 12). Người ta muốn đặt một trụ đèn cao áp tại một điểm cách đều ba đỉnh của tam giác. Nêu cách xác định vị trí đặt đèn và tính khoảng cách từ điểm đó đến ba đỉnh của tam giác.

Xem lời giải >>
Bài 7 :

Cho tam giác đều ABC nội tiếp đường tròn (O; 2cm). Tính AB.

Xem lời giải >>
Bài 8 :

Một chiếc máy quay ở đài truyền hình được đặt trên giá đỡ 3 chân, các điểm tiếp xúc với mặt đất của 3 chân lần lượt là 3 đỉnh A, B, C của tam giác đều ABC (Hình 16). Tính khoảng cách giữa 2 vị trí A và B, biết bán kính đường tròn ngoại tiếp tam giác ABC là 4 dm.

Xem lời giải >>
Bài 9 :

Biểu tượng tái chế trên thiết kế của huy hiệu hình tròn tam O được bạn Minh dựng dựa trên tam giác đều ABC nội tiếp trong (O) như Hình 7.10. Độ dài cạnh MN của biểu tượng tái chế bằng \(\frac{3}{5}\) độ dài BC. Tính MN nếu đường kính huy hiệu là 4 cm. Làm tròn kết quả đến hàng phần mười centimet.

Xem lời giải >>
Bài 10 :

Bạn An sử dụng các hình viên phân như Hình 7.25a để ghép thành mẫu hoa văn trang trí như trong Hình 7.25b. Tính diện tích của mẫu hoa văn.

Xem lời giải >>
Bài 11 :

Trong một dân cư có dạng hình tam giác đều với cạnh bằng \(60m\), người ta muốn tìm một vị trí đặt bộ phát wifi công cộng sao cho ở chỗ nào trong khu dân cư đều có thể bắt được sóng. Hỏi để có thể bắt được sóng wifi ở mọi nơi trong khu dân cư thì tầm phát sóng của thiết bị tối đa sẽ là bao nhiêu m?

Xem lời giải >>
Bài 12 :

Tính chu vi của tam giác đều nội tiếp \(\left( {O\,;\,R} \right)\) theo R

Xem lời giải >>
Bài 13 :

Tính diện tích tam giác đều nội tiếp đường tròn \(\left( {O;2cm} \right)\)

Xem lời giải >>