Thực hiện phép tính \(\dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{1}{5} - \dfrac{2}{{15}}} \right) + 1\dfrac{2}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\) ta được kết quả là
-
A.
\(\dfrac{{27}}{7}\)
-
B.
\(\dfrac{7}{{27}}\)
-
C.
\(\dfrac{1}{7}\)
-
D.
$\dfrac{1}{4}$
Thực hiện phép tính theo thứ tự: ngoặc tròn \( \to \) ngoặc vuông
Và nhân chia trước, cộng trừ sau.
Ta có \(\dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{1}{5} - \dfrac{2}{{15}}} \right) + 1\dfrac{2}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
\( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{3}{{15}} - \dfrac{2}{{15}}} \right) + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
\( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\dfrac{1}{{15}} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
\( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}.\dfrac{{15}}{1} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
\( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{3} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
$ = \dfrac{2}{9}.\dfrac{1}{3} - \left( {\dfrac{{ - 5}}{{27}}} \right)$
\( = \dfrac{2}{{27}} + \dfrac{5}{{27}}\)
\( = \dfrac{7}{{27}}\)
Đáp án : B