Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình$\left\{ {\begin{array}{*{20}{c}}{2x + 3y - 1 > 0}\\{5x - y + 4 < 0}\end{array}} \right.$?
-
A.
$\left( { - 1;4} \right)$.
-
B.
$\left( { - 2;4} \right)$.
-
C.
$\left( {0;0} \right)$.
-
D.
$\left( { - 3;4} \right)$.
- Thay lần lượt tọa độ các điểm vào hệ bất phương trình và kiểm tra tính đúng, sai của mỗi đáp án
Thay lần lượt tọa độ các điểm vào hệ bất phương trình ta thấy chỉ có điểm $\left( {0;0} \right)$ không thỏa mãn hệ.
Đáp án : C
Các bài tập cùng chuyên đề
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Cho bất phương trình \(2x + 3y - 6 \le 0\,\,(1)\). Chọn khẳng định đúng trong các khẳng định sau
Miền nghiệm của bất phương trình \( - x + 2 + 2\left( {y - 2} \right) < 2\left( {1 - x} \right)\) không chứa điểm:
Cho bất phương trình\( - 2x + \sqrt 3 y + \sqrt 2 \le 0\) có tập nghiệm là \(S\). Khẳng định nào sau đây là khẳng định đúng?
Miền nghiệm (phần không bị gạch) của bất phương trình \(3x - 2y > - 6\) là
Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x - \dfrac{3}{2}y \ge 1\\4x - 3y \le 2\end{array} \right.\) có tập nghiệm \(S\). Khẳng định nào sau đây là khẳng định đúng?
Cho hệ \(\left\{ \begin{array}{l}2x + 3y < 5\,\,\,(1)\\x + \dfrac{3}{2}y < 5\,\,\,(2)\end{array} \right.\). Gọi \({S_1}\) là tập nghiệm của bất phương trình (1), \({S_2}\) là tập nghiệm của bất phương trình (2) và \(S\) là tập nghiệm của hệ thì
Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D ?
Miền tam giác \(ABC\) kể cả ba cạnh sau đây là miền nghiệm của hệ bất phương trình nào trong bốn bệ A, B, C, D ?
Giá trị nhỏ nhất của biết thức $F = y - x$ trên miền xác định bởi hệ $\left\{ {\begin{array}{*{20}{c}}{y - 2x \le 2}\\{2y - x \ge 4}\\{x + y \le 5}\end{array}} \right.$ là.
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y \le 2\\3x + 5y \le 15\\x \ge 0\\y \ge 0\end{array} \right.\). Khẳng định nào sau đây là khẳng định sai ?
Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa $24$ $g$ hương liệu, $9$ lít nước và $210$ $g$ đường để pha chế nước cam và nước táo.
+ Để pha chế $1$ lít nước cam cần $30$ $g$ đường, $1$ lít nước và $1$ $g$ hương liệu;
+ Để pha chế $1$ lít nước táo cần $10$ $g$ đường, $1$ lít nước và $4$ $g$ hương liệu.
Mỗi lít nước cam nhận được $60$ điểm thưởng, mỗi lít nước táo nhận được $80$ điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?
Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin \(A\) và \(B\) đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả \(A\) lẫn \(B\) và có thể tiếp nhận không quá 600 đơn vị vitamin \(A\)và không quá 500 đơn vị vitamin \(B\). Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin \(B\) không ít hơn một nửa số đơn vị vitamin \(A\) và không nhiều hơn ba lần số đơn vị vitamin \(A\). Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin \(A\) có giá 9 đồng và mỗi đơn vị vitamin \(B\) có giá 7,5 đồng.
Miền biểu diễn nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}y \ge - 2\\x \ge 2\\2x + y \le 8\end{array} \right.\) có diện tích bằng bao nhiêu?
Đề mẫu ĐGNL 2019
Một bác nông dân cần trồng lúa và khoai trên diện tích đất gồm 6 ha, với lượng phân bón dữ trữ là 100kg và sử dụng tối đa 120 ngày công. Để trồng 1 ha lúa cần sử dụng 20kg phân bón, 10 ngày công với lợi nhuận là 30 triệu đồng, để trồng 1 ha khoai cần sử dụng 10 kg phân bón, 30 ngày công với lợi nhuận là 60 triệu đồng. Để đạt được lợi nhuận cao nhất, bác nông dân đã trồng \(x\left( {ha} \right)\) lúa và \(y\left( {ha} \right)\) khoai. Giá trị của \(x\) là:
Một công ty kinh chuẩn bị cho đợt khuyến mại nhằm mục đích thu hút khác hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên internet và truyền hình. Chi phí cho 1 phút quảng cáo trên internet là 800.000 đồng, trên sóng truyền hình là 4.000.000 đồng. Trang internet chỉ nhận phát các chương trình quảng cáo ngắn nhất là 5 phút. Do nhu cầu quảng cáo trên truyền hình lớn nên đài truyền hình chỉ nhận phát các chương trình dì tối đa là 4 phút. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp 6 lần trên internet. Công ty dự định chi tối đa 16.000.000 đồng cho quảng cáo. Công ty cần đặt thời lượng quảng cáo trên internet và truyền hình như thế nào để hiệu quả nhất?