Câu 4 trang 93 SGK Hình học 10

Bình chọn:
3.3 trên 6 phiếu

Cho đường thẳng Δ: x – y + 2 và hai điểm O(0, 0); A(2, 0)

Bài 4. Cho đường thẳng \(Δ: x – y + 2\) và hai điểm \(O(0; 0); A(2; 0)\)

a) Tìm điểm đối xứng của \(O\) qua \(Δ\)

b) Tìm điểm \(M\) trên \(Δ\) sao cho độ dài đường gấp khúc \(OMA\) ngắn nhất.

Trả lời:

a) Gọi \(H\) là hình chiếu của \(O\) trên \(Δ, H\) là giao điểm của đường thẳng qua \(O\) và vuông góc với \(Δ\).

\(\overline {OH}  = (x;y)\)

\( Δ: x – y + 2 = 0\) có vecto chỉ phương \(\overrightarrow u (1;1)\)

 \(\overrightarrow {OH}  \bot \Delta  \Rightarrow 1.x + 1.y = 0 \Leftrightarrow x + y = 0\)

Tọa độ điểm \(H\) là nghiệm của hệ phương trình:

\(\left\{ \matrix{
x + y = 0 \hfill \cr
x - y + 2 = 0 \hfill \cr} \right. \Rightarrow H( - 1;1)\)

Gọi \(O’\) là đỉnh đối xứng của \(O\) qua \(Δ\) thì \(H\) là trung điểm của đoạn thẳng \(OO’\)

\(\eqalign{
& {x_H} = {{{x_O} + {x_{O'}}} \over 2} \Leftarrow - 1 = {{0 + {x_{O'}}} \over 2} \Rightarrow {x_{O'}} = - 2 \cr
& {y_H} = {{{y_O} + {y_{O'}}} \over 2} \Leftarrow - 1 = {{0 + {y_{O'}}} \over 2} \Rightarrow {y_{O'}} = 2 \cr} \)

Vậy \(O’(-2;2)\).

b) Nối \(O’A\) cắt \(Δ\) tại \(M\)

Ta có: \(OM = O’M\)

\(⇒ OM + MA = O’M + MA = O’A\)

 

Giả sử trên \(Δ\) có một điểm \(M’ ≠ M\), ta có ngay:

\(OM’ +M’A > O’A\)

Vậy điểm \(M\), giao điểm của \(O’A\) với \(Δ\), chính là điểm thuộc \(Δ\) mà độ dài của đường gấp khúc \(OMA\) ngắn nhất.

\(A(2; 0); O(-2; 2)\) nên \(O’A\) có hệ phương trình: \(x + 2y – 2 = 0\)

Tọa độ của điểm \(M\) là nghiệm của hệ:

\(\left\{ \matrix{
x + 2y - 2 = 0 \hfill \cr
x - y + 2 = 0 \hfill \cr} \right. \Rightarrow M( - {2 \over 3},{4 \over 3})\)

loigiaihay.com

 

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan