Câu hỏi
1. Phân tích đa thức thành nhân tử:
a. \(3{x^2} - 6x + 2xy - 4y\)
b. \({a^2}\left( {{a^2} + 4} \right) - {a^2} + 4\)
2. Tìm \(x\) biết: \({x^2} - x + 0,25 = 0.\)
3. Chứng minh giá trị biểu thức \({\left( {m - 1} \right)^3} - \left( {{m^2} + 1} \right)\left( {m - 3} \right) - 2m\) là số nguyên tố với mọi giá trị của \(m\) .
- A \(\begin{array}{l}1.\,\,a)\,\,\left( {x - 2} \right)\left( {3x + 2y} \right)\\b)\,\,\left( {{a^2} + 2 - a} \right)\left( {{a^2} + 2 + a} \right)\\2.\,\,x = \frac{1}{2}\end{array}\)
- B \(\begin{array}{l}1.\,\,a)\,\,\left( {x + 2} \right)\left( {3x + 2y} \right)\\b)\,\,\left( {{a^2} + 2 - a} \right)\left( {{a^2} + 2 + a} \right)\\2.\,\,x = 1\end{array}\)
- C \(\begin{array}{l}1.\,\,a)\,\,\left( {x - 2} \right)\left( {3x + 2y} \right)\\b)\,\,\left( {{a^2} - 2 - a} \right)\left( {{a^2} - 2 + a} \right)\\2.\,\,x = 1\end{array}\)
- D \(\begin{array}{l}1.\,\,a)\,\,\left( {x + 2} \right)\left( {3x + 2y} \right)\\b)\,\,\left( {{a^2} - 2 - a} \right)\left( {{a^2} - 2 + a} \right)\\2.\,\,x = \frac{1}{2}\end{array}\)
Phương pháp giải:
1. Áp dụng phương pháp đặt nhân tử chung, phương pháp hằng đẳng thức để phân tích đa thức thành nhân tử.
2. Đưa về phương trình tích.
3. Áp dụng định nghĩa số nguyên tố là số chỉ có hai ước là 1 và chính nó.
Lời giải chi tiết:
1. Ta có:
\(\begin{array}{l}a)\;\;3{x^2} - 6x + 2xy - 4y = 3x\left( {x - 2} \right) + 2y\left( {x - 2} \right) = \left( {x - 2} \right)\left( {3x + 2y} \right).\\b)\;\;{a^2}\left( {{a^2} + 4} \right) - {a^2} + 4 = {a^4} + 4{a^2} - {a^2} + 4\\ = \left( {{a^4} + 4{a^2} + 4} \right) - {a^2} = {\left( {{a^2} + 2} \right)^2} - {a^2}\\ = \left( {{a^2} + 2 - a} \right)\left( {{a^2} + 2 + a} \right).\end{array}\)
\(\begin{array}{l}2.\;{x^2} - x + 0,25 = 0 \Leftrightarrow {x^2} - x + \frac{1}{4} = 0\\ \Leftrightarrow 4{x^2} - 4x + 1 = 0 \Leftrightarrow {\left( {2x - 1} \right)^2} = 0\\ \Leftrightarrow 2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}.\end{array}\)
Vậy \(x = \frac{1}{2}.\)
Chọn A.