Câu hỏi

Chứng tỏ rẳng 2 số \(2n + 1\) và \(6n + 5\) là hai số nguyên tố cùng nhau với mọi số tự nhiên n.


Phương pháp giải:

Đặt ƯCLN của chúng là d suy ra mỗi số đều chia hết cho d, sau đó ta tìm cách chứng minh \(d = 1\)

Lời giải chi tiết:

Đặt ƯCLN\(\left( {2n + 1;6n + 5} \right) = d\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\left( {2n + 1} \right)\,\, \vdots \,\,d\\\left( {6n + 5} \right)\,\, \vdots \,\,d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}3.\left( {2n + 1} \right)\,\, \vdots \,\,d\\\left( {6n + 5} \right)\,\, \vdots \,\,d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left( {6n + 3} \right)\,\, \vdots \,\,d\\\left( {6n + 5} \right)\,\, \vdots \,\,d\end{array} \right.\\ \Rightarrow \left[ {\left( {6n + 5} \right) - \left( {6n + 3} \right)} \right]\,\, \vdots \,\,d\\ \Rightarrow \left( {6n + 5 - 6n - 3} \right)\,\, \vdots \,\,d\\ \Rightarrow 2\,\, \vdots \,\,d\\ \Rightarrow d \in \left\{ {1;2} \right\}\end{array}\)

Mặt khác \(2n + 1\) là số lẻ nên \(d \ne 2\) \( \Rightarrow d = 1\)

Vậy \(2n + 1\) và \(6n + 5\) là hai số nguyên tố cùng nhau với mọi số tự nhiên n.


Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay