Câu hỏi

Tính bằng cách hợp lí (nếu có thể) :

\(\begin{array}{*{20}{l}}{A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28}\\{B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}}\end{array}\)

 

  • A \(A=1604\)

    \(B=91\)

  • B \(A=1605\)

    \(B=90\)

  • C \(A=1624\)

    \(B=19\)

  • D \(A=6104\)

    \(B=18\)


Phương pháp giải:

Sử dụng quy tắc nhân, chia hai lũy thừa cùng cơ số và quy tắc thứ tự thực hiện phép tính để tính giá trị của biểu thức.

Lời giải chi tiết:

\(\begin{array}{l}A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = \left( {6888:56 - 121} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = \left( {123 - 121} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = 2.152 + 13.\left( {72 + 28} \right)\\\,\,\,\,\,\, = 2.152 + 13.100\\\,\,\,\,\,\, = 304 + 1300\\\,\,\,\,\,\, = 1604\\\\\\\end{array}\)   \(\begin{array}{l}B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {{{17}^{29 - 27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {{{17}^2}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {289 - 256} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left( {5082:33 + 13.12} \right):31 + {9^2}\\\,\,\,\,\, = \left( {154 + 156} \right):31 + {9^2}\\\,\,\,\,\, = 310:31 + 81\\\,\,\,\,\, = 10 + 81 = 91.\end{array}\)

Chọn A


Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay