Câu hỏi

(1 điểm) Cho tứ giác \(ABCD\) có \(BC = CD\) và \(DB\) là tia phân giác của góc \(D\). Chứng minh rằng \(ABCD\) là hình thang.

  • A \(ABCD\) là hình thang
  • B \(ABCD\) là hình vuông
  • C \(ABCD\) là hình chữ nhật
  • D \(ABCD\) là hình thang vuông

Lời giải chi tiết:

Hướng dẫn giải chi tiết:

 

Xét \(\Delta BCD\) có \(BC = CD(gt)\) nên \(\Delta BCD\) là tam giác cân.

Suy ra  \(\widehat {CBD} = \widehat {CDB}\)

Vì \(DB\) là tia phân giác góc \(D\) của tứ giác \(ABCD\) nên  \)\widehat {ADB} = \widehat {CDB}\)

Do đó  \(\widehat {CBD} = \widehat {ADB}\)

Mà hai góc  \(\widehat {CBD}\)  và \(\widehat {ADB}\)  là hai góc ở vị trí so le trong nên suy ra \(BC//AD\) .

Tứ giác \(ABCD\) có \(AD//BC\)  (cmt) nên là hình thang.


Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay